The efficiency of parallel quantum memory for light in a cavity configuration

Abstract

We present a new scheme of quantum memory for optical images (spatially multimode light fields) that allows mapping the quantum state of the signal onto the long-lived coherence of the ground state of an ensemble of stationary atoms or impurity centers. The memory medium is embedded in an optical cavity with degenerate transverse modes, which increases the effective optical thickness of the medium and allows one, in principle, to store information in optically thin atomic layers. Since, in reality, storage and retrieval of limited-duration signals, including signals shorter than the lifetime of the field in the cavity, is of interest, we do not use the low-Q cavity approximation. The influence of losses due to partial reflection of the nonstationary signal field incident on a coupling mirror on the storage efficiency is considered. We used the method of approximate impedance matching, wherein losses due to reflection can be minimized by controlling the coupling parameter of the light field with memory medium in time, thus creating conditions for destructive interference of the signal and local fields on the coupling mirror. The influence of diffraction on the transverse resolution of memory at the writing and readout stages is investigated, and the number of effectively stored transverse spatial modes of the signal is estimated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Hammerer, A. S. Sorensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    C. Simon, M. Afzelius, J. Appel, et al., Eur. Phys. J. 58, 1 (2010).

    ADS  Google Scholar 

  3. 3.

    A. L. Lvovsky, B. C. Sanders, and W. Tittel, Mature Photonics 3, 706 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    M. P. Hedges, J. J. Longdell, Li Yongmin, and M. J. Sellars, Nature 465, 1052 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    M. Hosseini, B. M. Sparkes, G. Campbell, B. C. Buchler, and P. K. Lam, Nature Commun. 2, 174 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    B. Julsgaard, J. Sherson, J. Fiurasek, J. I. Cirac, and E. S. Polzik, Nature 432, 482 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    D. V. Vasilyev, I. V. Sokolov, and E. S. Polzik, Phys. Rev. A 77, 020302 (2008).

    ADS  Article  Google Scholar 

  8. 8.

    D. V. Vasil’ev, I. V. Sokolov, and E. S. Polzik, Opt. Spektrosk. 106(6), 962 (2009).

    Google Scholar 

  9. 9.

    T. Golubeva, Yu. Golubev, O. Mishina, A. Bramati, J. Laurat, and E. Giacobino, Phys. Rev. A 83, 053810 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    K. S. Samburskaya, T. Yu. Golubeva, Yu. M. Golubev, and E. Giacobino, Opt. Spektrosk. 110(6), 827 (2011).

    Google Scholar 

  11. 11.

    E. Zeuthen, A. Grodecka-Grad, and A. S. Sørensen,, Phys. Rev. A 84, 043838 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    D. V. Vasilyev, I. V. Sokolov, and E. S. Polzik, Phys. Rev. A 81, 020302 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    D. V. Vasilyev and I. V. Sokolov, Eur. Phys. J. D 66, 294 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    A. Dantan, A. Bramati, and M. Pinard, Phys. Rev. A 71, 043801 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    A. V. Gorshkov, A. Andre, M. D. Lukin, and A. S. Sorensen, Phys. Rev. A 76, 033804 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    A. Kalachev, Phys. Rev. A 78, 043812 (2008).

    ADS  Article  Google Scholar 

  17. 17.

    A. Kalachev and S. Kröll,, Phys. Rev. A 74, 023814 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    Q. Y. He, M. D. Reid, E. Giacobino, J. Cviklinski, and P. D. Drummond, Phys. Rev. A 79, 022310 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    J. Dilley, P. Nisbet, B. W. Shore, and A. Kuhn, Phys. Rev. A 85, 023834 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    N. N. Rozanov, Optical Bistability and Hysteresis in Distributed Nonlinear Systems (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  21. 21.

    H. J. Kimble, Nature 453, 1023 (2008).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Vetlugin.

Additional information

Original Russian Text © A.N. Vetlugin, I.V. Sokolov, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 6, pp. 980–989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vetlugin, A.N., Sokolov, I.V. The efficiency of parallel quantum memory for light in a cavity configuration. Opt. Spectrosc. 115, 875–883 (2013). https://doi.org/10.1134/S0030400X13120205

Download citation

Keywords

  • Coupling Parameter
  • Cavity Field
  • Quantum Memory
  • Storage Efficiency
  • Oblique Wave