Skip to main content

Dynamics of oxide phases on the surface of single- and polycrystalline Pb1 − x Sn x Te films upon their investigation by the raman light scattering method


We have studied Raman spectra of single- and polycrystalline Pb1 − x Sn x Te (0 ≤ x ≤ 1) films on different substrates in relation to the intensity of the laser action. The composition of oxide phases on the surface of lead-tin telluride films has been described, and their modification as a result of photostimulated oxidation of the surface during measurements of spectra has been analyzed. We have shown that, for films with a small mole fraction of tin telluride (x ≤ 0.26), irrespective of the crystalline state, predominant oxidation of tellurium with the formation of the compound TeO2 takes place during the laser action. In films with a high content of tin, at a laser-action intensity higher than 1000 μW, tellurium dioxide TeO2 on the surface is replaced with tin dioxide SnO2.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. P. Pearsall, R. Carles, and J. C. Portal, Appl. Phys. Lett. 42, 436 (1983).

    ADS  Article  Google Scholar 

  2. 2.

    B. Jusserand and J. Sapriel, Phys. Rev. 24, 7194 (1981).

    ADS  Article  Google Scholar 

  3. 3.

    J. Alvarez-Garcia, E. Rudigier, N. Rega, B. Barcones, R. Scheer, A. Perez-Rodriguez, A. Romano-Rodriguez, and J. R. Morante, Thin Solid Films 431–432, 122 (2003).

    Article  Google Scholar 

  4. 4.

    E. P. Zaretskaya and V. F. Gremenok, Opt. Spektrosk. 101(6), 992 (2006).

    Google Scholar 

  5. 5.

    A. I. Belogorokhov, L. I. Belogorokhova, D. R. Khokhlov, and S. V. Lemeshko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 701 (2002).

    Google Scholar 

  6. 6.

    S. Badrinarayanan, A. B. Mandale, and A. P. B. Sinha, Mater. Chem. Phys. 11(1), 1 (1984).

    Article  Google Scholar 

  7. 7.

    V. A. Volodin, A. N. Akimov, and M. P. Sinyukov, Fazovye Perekhody, Uporyad. Sostoyan. Novye Mater. No. 4, 36 (2012).

    Google Scholar 

  8. 8.

    Y. Batonneau, C. Bremard, J. Laureyns, and J. C. Merlin, J. Raman Spectrosc 31, 1113 (2000).

    ADS  Article  Google Scholar 

  9. 9.

    J. L. Blackburn, H. Chappell, J. M. Luther, A. J. Nozik, and J. C. Johnson, J. Phys. Chem. Lett. 2, 599 (2011).

    Article  Google Scholar 

  10. 10.

    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, H. Zogg, E. Abramof, P. H. O. Rappl, Semicond. Sci. Technol. 26(10), 105003 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    I. I. Amirov, S. P. Zimin, E. S. Gorlachev, V. V. Naumov, E. Abramof, and P. H. O. Rappl, J. Surf. Invest. X-Ray Synchrotron Neutron Tech. 6(4), 643 (2012).

    Article  Google Scholar 

  12. 12.

    L. Ao, L. Wang, and W. Wang, Micro Nano Lett. 7(7), 621 (2012).

    Article  Google Scholar 

  13. 13.

    J. Chen and W. Z. Shen, J. Appl. Phys. 99, 013513 (2006).

    ADS  Article  Google Scholar 

  14. 14.

    S. V. Ovsyannikov, Y. S. Ponosov, V. V. Shchennikov, and V. E. Mogilenskikh, Phys. Stat. Sol. C 1(11), 3110 (2004).

    Article  Google Scholar 

  15. 15.

    N. Romcevic, A. Golubovic, M. Romcevic, J. Trajic, S. Nikolic, S. Duric, and V. N. Nikiforov, J. Alloys Compd. 402, 36 (2005).

    Article  Google Scholar 

  16. 16.

    H. Wu, C. Cao, J. Si, T. Xu, H. Zhang, H. Wu, J. Chen, W. Shen, and N. Dai, J. Appl. Phys. 101, 103505 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tscharntke, Opt. Spektrosk. 109(2), 301 (2010).

    Article  Google Scholar 

  18. 18.

    N. Romcevic, J. Trajic, B. Hadzic, M. Romcevic, D. Stojanovic, Z. Lazarevic, T. A. Kuznetsov, D. R. Khokhlov, R. Rudolf, and I. Anzel, Acta Phys. Polonica A 116(1), 91 (2009).

    ADS  Google Scholar 

  19. 19.

    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    K. Mcguire, Z. W. Pan, Z. L. Wang, D. Milkie, J. Menendez, A. M. Rao, J. Nanosci. Nanotechnol. 2(5), 499 (2002).

    Google Scholar 

  21. 21.

    M. Bettini and H. J. Richter, Surf. Sci. 80, 334 (1979).

    ADS  Article  Google Scholar 

  22. 22.

    T. S. Zyubina, A. S. Zyubin, L. V. Yashina, and V. I. Shtanov, Zh. Neorg. Khim. 53(5), 817 (2008).

    Google Scholar 

  23. 23.

    T. S. Sun, S. P. Buchner, N. E. Byer, and J. M. Chen, J. Vac. Sci. Technol. 15(4), 1292 (1978).

    ADS  Article  Google Scholar 

  24. 24.

    T. Gao and T. Wang, Mater. Res. Bull. 43, 836 (2008).

    Article  Google Scholar 

  25. 25.

    J. X. Zhou, M. S. Zhang, J. M. Hong, and Z. Yin, Solid State Commun. 138, 242 (2006).

    ADS  Article  Google Scholar 

  26. 26.

    K. N. Yu, Y. Xiong, Y. Liu, and C. Xiong, Phys. Rev. 55(4), 2666 (1997).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. P. Zimin.

Additional information

Original Russian Text © S.P. Zimin, E.S. Gorlachev, N.V. Gladysheva, V.V. Naumov, V.F. Gremenok, H.G. Seidi, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 5, pp. 767–773.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zimin, S.P., Gorlachev, E.S., Gladysheva, N.V. et al. Dynamics of oxide phases on the surface of single- and polycrystalline Pb1 − x Sn x Te films upon their investigation by the raman light scattering method. Opt. Spectrosc. 115, 679–684 (2013).

Download citation


  • PbTe
  • SnTe
  • Lead Telluride
  • Lead Chalcogenide
  • Tellurium Dioxide