Optics and Spectroscopy

, Volume 115, Issue 5, pp 679–684 | Cite as

Dynamics of oxide phases on the surface of single- and polycrystalline Pb1 − x Sn x Te films upon their investigation by the raman light scattering method

  • S. P. ZiminEmail author
  • E. S. Gorlachev
  • N. V. Gladysheva
  • V. V. Naumov
  • V. F. Gremenok
  • H. G. Seidi
Condensed-Matter Spectroscopy


We have studied Raman spectra of single- and polycrystalline Pb1 − x Sn x Te (0 ≤ x ≤ 1) films on different substrates in relation to the intensity of the laser action. The composition of oxide phases on the surface of lead-tin telluride films has been described, and their modification as a result of photostimulated oxidation of the surface during measurements of spectra has been analyzed. We have shown that, for films with a small mole fraction of tin telluride (x ≤ 0.26), irrespective of the crystalline state, predominant oxidation of tellurium with the formation of the compound TeO2 takes place during the laser action. In films with a high content of tin, at a laser-action intensity higher than 1000 μW, tellurium dioxide TeO2 on the surface is replaced with tin dioxide SnO2.


PbTe SnTe Lead Telluride Lead Chalcogenide Tellurium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. P. Pearsall, R. Carles, and J. C. Portal, Appl. Phys. Lett. 42, 436 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    B. Jusserand and J. Sapriel, Phys. Rev. 24, 7194 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    J. Alvarez-Garcia, E. Rudigier, N. Rega, B. Barcones, R. Scheer, A. Perez-Rodriguez, A. Romano-Rodriguez, and J. R. Morante, Thin Solid Films 431–432, 122 (2003).CrossRefGoogle Scholar
  4. 4.
    E. P. Zaretskaya and V. F. Gremenok, Opt. Spektrosk. 101(6), 992 (2006).Google Scholar
  5. 5.
    A. I. Belogorokhov, L. I. Belogorokhova, D. R. Khokhlov, and S. V. Lemeshko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 701 (2002).Google Scholar
  6. 6.
    S. Badrinarayanan, A. B. Mandale, and A. P. B. Sinha, Mater. Chem. Phys. 11(1), 1 (1984).CrossRefGoogle Scholar
  7. 7.
    V. A. Volodin, A. N. Akimov, and M. P. Sinyukov, Fazovye Perekhody, Uporyad. Sostoyan. Novye Mater. No. 4, 36 (2012).Google Scholar
  8. 8.
    Y. Batonneau, C. Bremard, J. Laureyns, and J. C. Merlin, J. Raman Spectrosc 31, 1113 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    J. L. Blackburn, H. Chappell, J. M. Luther, A. J. Nozik, and J. C. Johnson, J. Phys. Chem. Lett. 2, 599 (2011).CrossRefGoogle Scholar
  10. 10.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, H. Zogg, E. Abramof, P. H. O. Rappl, Semicond. Sci. Technol. 26(10), 105003 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    I. I. Amirov, S. P. Zimin, E. S. Gorlachev, V. V. Naumov, E. Abramof, and P. H. O. Rappl, J. Surf. Invest. X-Ray Synchrotron Neutron Tech. 6(4), 643 (2012).CrossRefGoogle Scholar
  12. 12.
    L. Ao, L. Wang, and W. Wang, Micro Nano Lett. 7(7), 621 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Chen and W. Z. Shen, J. Appl. Phys. 99, 013513 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    S. V. Ovsyannikov, Y. S. Ponosov, V. V. Shchennikov, and V. E. Mogilenskikh, Phys. Stat. Sol. C 1(11), 3110 (2004).CrossRefGoogle Scholar
  15. 15.
    N. Romcevic, A. Golubovic, M. Romcevic, J. Trajic, S. Nikolic, S. Duric, and V. N. Nikiforov, J. Alloys Compd. 402, 36 (2005).CrossRefGoogle Scholar
  16. 16.
    H. Wu, C. Cao, J. Si, T. Xu, H. Zhang, H. Wu, J. Chen, W. Shen, and N. Dai, J. Appl. Phys. 101, 103505 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tscharntke, Opt. Spektrosk. 109(2), 301 (2010).CrossRefGoogle Scholar
  18. 18.
    N. Romcevic, J. Trajic, B. Hadzic, M. Romcevic, D. Stojanovic, Z. Lazarevic, T. A. Kuznetsov, D. R. Khokhlov, R. Rudolf, and I. Anzel, Acta Phys. Polonica A 116(1), 91 (2009).ADSGoogle Scholar
  19. 19.
    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    K. Mcguire, Z. W. Pan, Z. L. Wang, D. Milkie, J. Menendez, A. M. Rao, J. Nanosci. Nanotechnol. 2(5), 499 (2002).Google Scholar
  21. 21.
    M. Bettini and H. J. Richter, Surf. Sci. 80, 334 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    T. S. Zyubina, A. S. Zyubin, L. V. Yashina, and V. I. Shtanov, Zh. Neorg. Khim. 53(5), 817 (2008).Google Scholar
  23. 23.
    T. S. Sun, S. P. Buchner, N. E. Byer, and J. M. Chen, J. Vac. Sci. Technol. 15(4), 1292 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    T. Gao and T. Wang, Mater. Res. Bull. 43, 836 (2008).CrossRefGoogle Scholar
  25. 25.
    J. X. Zhou, M. S. Zhang, J. M. Hong, and Z. Yin, Solid State Commun. 138, 242 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    K. N. Yu, Y. Xiong, Y. Liu, and C. Xiong, Phys. Rev. 55(4), 2666 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. P. Zimin
    • 1
    Email author
  • E. S. Gorlachev
    • 1
    • 2
  • N. V. Gladysheva
    • 1
  • V. V. Naumov
    • 2
  • V. F. Gremenok
    • 3
  • H. G. Seidi
    • 3
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia
  2. 2.Institute of Physics and Technology, Yaroslavl BranchRussian Academy of SciencesYaroslavlRussia
  3. 3.Scientific and Practical Materials Research CenterNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations