Skip to main content
Log in

Physical, structural, and luminescence studies of Nd3+ doped MgO-ZnO borate glass

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A series of borate glass of the system xNd2O3-5MgO-20ZnO-(75 − x)B2O3, where x = 0.5, 1.0,1.5, 2.0, and 2.5 was successfully fabricated using melt quench method. The properties of the glass were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), absorption and luminescence spectra. The upconversion properties of Nd3+ doped borate glass were observed by using 574 nm excitation wavelength corresponding to 4 I 15/22 H 114/2 transition. The emission bands centered at 460, 500 and 620 nm which corresponding to the Nd3+ transitions, 4 F 7/24 I 15/2, 2 H 11/24 I 15/2, and 4 F 9/24 I 15/2 respectively were observed at room temperature. The presence of Nd3+ in borate based glass could intensify the upconversion luminescence spectra as it can potentially be used as host materials for upconversion lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hewak, Properties, Processing and Application of Glass and Rare-Earth Glasses for optical Fibers, INSPEC (The Institution of Electrical Engineers, London, United Kingdom, 1998).

    Google Scholar 

  2. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, Progr. Materials Sci. 57, 1426 (2012).

    Article  Google Scholar 

  3. J. Fernandez, I. Iparraguirre, R. Balda, J. Azkargorta, M. Voda, and J.M. Fernandez-Navarro, Optical Materials 25, 185 (2004).

    Article  ADS  Google Scholar 

  4. G. Pedroza, W. M. de Azevedo, H. J. Khoury, and E. F. da Silva Jr, Appl. Radiation and Isotopes 56, 563 (2002).

    Article  Google Scholar 

  5. Y. S. M. Alajerami, S. Hashim, A.T. Ramli, M. A. Saleh, and T. Kadni, Radiat. Prot. Dosim. (2012), 1–10 doi:10.1093/rpd/ncs310

    Google Scholar 

  6. N. A. Ghoneim, H. A. ElBatal, A. M. Abdelghany, and I. S. Ali, J. Alloys and Compounds 509, 6913 (2011).

    Article  Google Scholar 

  7. W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, Sensors and Actuators B: Chemical 173, 250 (2012).

    Article  Google Scholar 

  8. K. Patek, Glass Laser (CRC Press, London, 1970).

    Google Scholar 

  9. I. Iparraguirre, J. Azkargorta, R. Balda, and J. Fernández, Opt. Materials 27, 1697 (2005).

    Article  ADS  Google Scholar 

  10. D. Chen, Y. Wang, Y. Yu, F. Liu, and P. Huang, J. Rare Earths 26, 428 (2008).

    Article  Google Scholar 

  11. P. V. Ramakrishna, S. V. N. Pammi, and K. Samatha, Solid State Commun. 155, 21 (2013).

    Article  ADS  Google Scholar 

  12. A. D. Sontakke and K. Annapurna, Mater. Chem. Phys. 137, 916 (2013).

    Article  Google Scholar 

  13. I. N. Ogorodnikov, V. A. Pustovarov, S. I. Omel’kov, A. V. Tolmachev, and R. P. Yavetskiy, Opt. Spectrosc. 102(1), 60 (2007).

    Article  ADS  Google Scholar 

  14. I. N. Ogorodnikov, N. E. Poryvai, I. N. Sedunova, A. V. Tolmachev, and R. P. Yavetskiy, Phys. Solid State 53, 263 (2011).

    Article  ADS  Google Scholar 

  15. I. N. Ogorodnikov, N. E. Poryvai, I. N. Sedunova, A. V. Tolmachev, and R. P. Yavetskiy, Opt. Spectrosc. 110(2), 266 (2011).

    Article  ADS  Google Scholar 

  16. I. N. Ogorodnikov, I. N. Sedunova, A. V. Tolmachev, R. P. Yavetskiy, Opt. Spectrosc. 113(1), 63 (2012).

    Article  ADS  Google Scholar 

  17. Y. S. M. Alajerami, S. Hashim, W. M. WanHassan, and A. T. Ramli, Physica B 407, 2390 (2012).

    Article  ADS  Google Scholar 

  18. Y. S. M. Alajerami, S. Hashim, W. M. WanHassan, A. T. Ramli, and A. Kasim, Physica B 407, 2398 (2012).

    Article  ADS  Google Scholar 

  19. Y. C. Ratnakaram, A. Balakrishna, D. Rajesh, and M. Seshadri, J. Molecular Structure 1028, 141–147 (2012).

    Article  ADS  Google Scholar 

  20. A. G. Souza Filho, J. Mendes Filho, F. E. A. Melo, M. C. C. Custódio, R. Lebullenger, and A. C. Hernandes, J. Phys. Chem. Solids 61, 1535 (2000).

    Article  ADS  Google Scholar 

  21. L. C. Courrol, L. R. P. Kassab, V. D. D. Cacho, S. H. Tatumi, and N. U. Wetter, J. Luminescence 102–103, 101 (2003).

    Article  Google Scholar 

  22. M. M. Ahmaed, C. A. Hogarth, and M. M. Khan, J. Mater. Sci. Lett. 19, 4040 (1984).

    Article  ADS  Google Scholar 

  23. C. R. K. T. Raghavendra Rao, U. S. Udayachandran Thampy, Ch. Venkata, Y. P. Reddy, P. Sambasiva Rao, and R. V. S. S. N. Ravikumar, Physica B 406, 2132 (2011).

    Article  ADS  Google Scholar 

  24. P. Chimalawong, J. Kaewkhao, T. Kittiauchawal, C. Kedkaew, and P. Limsuwan, Am. J. Appl. Sci. 7, 584 (2010).

    Article  Google Scholar 

  25. S. Venugopal Rao, N. K. M. Naga Srinivas, and D. Narayana Rao, Chem. Phys. Lett. 361, 439 (2002).

    Article  ADS  Google Scholar 

  26. J. Tauc, Phys. Stat. Sol. 15, 627 (1966).

    Article  ADS  Google Scholar 

  27. K. S. V. Sudhakar, M. Srinvasa Reddy, L. Srinivasa Rao, and N. Veeraiah, J. Luminescence 128, 1791 (2008).

    Article  ADS  Google Scholar 

  28. G. Padmaja and P. Kistaiah, J. Phys. Chem. A 113, 2397 (2009).

    Article  Google Scholar 

  29. J. E. Shelby, Introduction to Glass Science and Technology, 2nd ed., (Roy. Soc. Chem., London, 2005).

    Google Scholar 

  30. C. R. K. T. Raghavendra Rao, U. S. Udayachandran Thampy, Ch. Venkata, Y. P. Reddy, P. Sambasiva Rao, and R. V. S. S. N. Ravikumar, Appl. Magn. Res. 40, 339 (2011).

    Article  Google Scholar 

  31. K. S. D. Singh, G. Singh, Manupriya, S. Mohan, M. Arora, and G. Sharma, J. Phys. Condens. Matter 20, 1 (2008).

    Google Scholar 

  32. E. C. Simona Rada and M. Neumann, J. Mol. Model 16, 1333 (2010).

    Article  Google Scholar 

  33. B. H. Stuart., Infrared Spectroscopy: Fundamentals and Applications (Wiley, London, 2004).

    Book  Google Scholar 

  34. J. A. D. H. Peter R. Griffiths, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, New Jersey, 2007).

    Book  Google Scholar 

  35. H. S. A. A. Alemi, A. R. Mirmohseni, and V. Golsanamlu, Sci. Bull. Mater. 29, 55 (2006).

    Article  Google Scholar 

  36. Y. B. Saddeek, J. Alloys Compd. 467(1–2), 14 (2009).

    Article  Google Scholar 

  37. S. Liu, A. Lu, X. Tang, and S. He, J. Rare Earths 24(2), 163 (2006).

    Article  Google Scholar 

  38. M. A. K. El-Fayoumi and M. Farouk, J. Alloys Compd. 482, 356 (2009).

    Article  Google Scholar 

  39. S. G. Motke, S. P. Yanale, and S. S. Yanale, Bull. Mater. Sci., 25, 75 (2002).

    Article  Google Scholar 

  40. V. C. Veranna Gowda and R. V. Anavekar, Bull. Mater. Sci. 27, 199 (2004).

    Article  Google Scholar 

  41. A. Kasim, in Proceedings of the Business Engineering and Industrial Applications Colloquium (BEIAC) (IEEE, 2012), pp. 38–42.

    Book  Google Scholar 

  42. J. L. Deqiang Wang, Zhen Zhang, Yingfei Hu, and Zhiling Shen, New J. Glass Ceram. 1, 34 (2011).

    Article  Google Scholar 

  43. J. A. I. Iparraguirre, J. M. Fernandez-Navarro, M. AlSaleh, J. Fernandez, and R. Balda, J. Non-Cryst. Solids 353, 990 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Saleh Mustafa Alajerami.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razali, W.A.W., Azman, K., Hashim, S. et al. Physical, structural, and luminescence studies of Nd3+ doped MgO-ZnO borate glass. Opt. Spectrosc. 115, 701–707 (2013). https://doi.org/10.1134/S0030400X13110192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13110192

Keywords

Navigation