Skip to main content

Experimental investigation of the dynamics of laser-induced gas-plasma flows under femtosecond laser ablation of copper in vacuum

Abstract

Thermophysical and gas-dynamic characteristics of gas-plasma flows induced by ultrashort laser pulses interacting with a thin-film copper target in vacuum were studied experimentally. Using combined laser interferometry and complex processing of experimental data, we estimated the momentum coupling coefficient and the efficiency of laser-energy conversion to kinetic energy, spatiotemporal distributions of the number density and velocities of particles, pressure, and temperature in the gas-plasma flow. We provide comparative analysis of presented data with those found in the literature, which were obtained by other methods.

This is a preview of subscription content, access via your institution.

References

  1. E. Axente, I. N. Mihailescu, J. Hermann, and T. E. Itina, Appl. Phys. Lett. 99(8), 081502 (2011).

    Article  ADS  Google Scholar 

  2. G. Petite, Lasers et Technologies Femtosecondes, Ed. by M. Sentis and O. P. Uteza (Saint-Etienne, 2005), p. 466.

  3. G. G. Gladush and I. Smurov, Physics of Laser Materials Processing. Springer Series in Materials Science (Springer, Berlin, 2011).

    Book  Google Scholar 

  4. C. Phipps and J. Luke, Laser Ablation and Its Applications (Springer, New York, 2007).

    Book  Google Scholar 

  5. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino, Adv. Spectrosc. Las. Sensing, 229 (2006).

    Book  Google Scholar 

  6. A. De Giacomo, M. Dell’Aglio, A. Santagata, and R. Teghil, Spectrochim. Acta 60(7–8), 935 (2005).

    Article  ADS  Google Scholar 

  7. D. Grojo, J. Hermann, and A. Perrone, J. Appl. Phys. 97(6), 063306 (2005).

    Article  ADS  Google Scholar 

  8. J. Waugh, C. Gregory, L. Wilson, B. Loupias, E. Brambrink, M. Koenig, Y. Sakawa, Y. Kuramitsu, H. Takabe, R. Kodama, and N. Woolsey, Astrophys. Space Sci. 322(1), 31 (2009).

    Article  ADS  Google Scholar 

  9. E. Amer, P. Gren, A. F. H. Kaplan, and M. El Shaer, Appl. Surf. Sci. 256(14), 4633 (2010).

    Article  ADS  Google Scholar 

  10. E. Axente, J. Hermann, M. Sentis, and I. N. Mihailescu, Appl. Surf. Sci. 255(24), 9734 (2009).

    Article  ADS  Google Scholar 

  11. N. Vogel and N. Kochan, Applied Surface Science 127–129, 928 (1998).

    Article  Google Scholar 

  12. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Prib. Tekh. Eksp. No. 3, 104 (2010) [Instrum. Experim. Techn. 53 (3), 416 (2010)].

    Google Scholar 

  13. E. Yu. Loktionov, Yu. Yu. Protasov, V. D. Telekh, and R. R. Khaziev, Prib. Tekh. Eksp. No. 1, 53 (2013) [Instrum. Experim. Techn. 56 (1), 46 (2013)].

    Google Scholar 

  14. Y. Hirayama and M. Obara, J. Appl. Phys. 97(6), 064903 (2005).

    Article  ADS  Google Scholar 

  15. S. Noel, J. Hermann, and T. Itina, Appl. Surf. Sci. 253(15), 6310 (2007).

    Article  ADS  Google Scholar 

  16. J. H. Klein-Wiele, G. Marowsky, and P. Simon, Appl. Phys. A 69, 187 (1999).

    Article  ADS  Google Scholar 

  17. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, Appl. Phys. A: Materials Science Proc. 90(3), 537 (2008).

    Article  ADS  Google Scholar 

  18. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Prib. Tekh. Eksp. No. 4, 140 (2010) [Instrum. Experim. Techn. 53 (4), 596 (2010)].

    Google Scholar 

  19. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Teplofiz. Vys. Temp. 49(3), 415 (2011) [High Temperature 49 (3), 404 (2011)].

    Google Scholar 

  20. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Opt. Spektrosk. 112(4), 685 (2012).

    Article  Google Scholar 

  21. A. Kasperczuk and T. Pisarczyk, Opt. Appl. 31(3), 571 (2001).

    Google Scholar 

  22. A. N. Zaidel’ and G. V. Ostrovskaya, Laser Methods of Investigation of Plasmas (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  23. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and of High-Temperature Hydrodynamical Phenomena (Nauka, Moscow, 1966).

    Google Scholar 

  24. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, Appl. Surf. Sci. 186(1–4), 358 (2002).

    Article  ADS  Google Scholar 

  25. B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, Appl. Phys. A 69(7), 381 (1999).

    Article  ADS  Google Scholar 

  26. Y. Hirayama and M. Obara, Proc. SPIE-Int. Soc. Opt. Eng. 5714, 271 (2005).

    Article  ADS  Google Scholar 

  27. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, Appl. Surf. Sci. 197–198, 862 (2002).

    Article  Google Scholar 

  28. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, F. Dausinger, S. Valette, C. Donnet, and E. Audouard, Appl. Phys. A 80(7), 1589 (2005).

    Article  ADS  Google Scholar 

  29. J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, Appl. Phys. A 103(2), 447 (2011).

    Article  ADS  Google Scholar 

  30. R. Bernath, PhD Thesis (University of Central Florida, 2007).

  31. X. Liu, W. Zhou, C. Chen, L. Zhao, and Y. Zhang, J. Mater. Proces. Technol. 203(1–3), 202 (2008).

    Article  Google Scholar 

  32. S. Nolte, C. Momma, H. Jacobs, B. N. Chichkov, B. Wellegehausen, and H. Welling, J. Opt. Soc. Am. 14(10), 2716 (1997).

    Article  ADS  Google Scholar 

  33. J. Jandeleit, G. Urbasch, H. D. Hoffmann, H. G. Treusch, and E. W. Kreutz, Appl. Phys. A 63(2), 117 (1996).

    Article  ADS  Google Scholar 

  34. Y. Hirayama and M. Obara, Appl. Surf. Sci. 197–198, 741 (2002).

    Article  Google Scholar 

  35. Y. Afanasiev, B. Chichkov, N. Demchenko, V. Isakov, and I. Zavestovskaya, J. Russ. Las. Res. 20(2), 89 (1999).

    Article  Google Scholar 

  36. J. P. Colombier, P. Combis, and F. Bonneau, Phys. Rev. B 71(16), 165406 (2005).

    Article  ADS  Google Scholar 

  37. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tennermann, H. Welling, and B. Wellegehausen, Opt. Commun. 129(1–2), 134 (1996).

    Article  ADS  Google Scholar 

  38. A. V. Pakhomov, A. J. Roybal, and M. Duran, Appl. Spectrosc. 53(8), 979 (1999).

    Article  ADS  Google Scholar 

  39. S. Bruneau, J. Hermann, M. L. Sentis, G. Dumitru, V. Romano, H. P. Weber, A. F. Semerok, and W. Marine, Proc. SPIE-Int. Soc. Opt. Eng. 5147, 199 (2003).

    Article  ADS  Google Scholar 

  40. S. Noel and J. Hermann, Proc. SPIE-Int. Soc. Opt. Eng. 6785, 67850 (2007).

    Article  ADS  Google Scholar 

  41. A. Y. Vorobyev and C. Guo, J. Phys. Conf. Ser. 59, 579 (2007).

    Article  ADS  Google Scholar 

  42. P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, Quantum Electron. 35(9), 831 (2005).

    Article  ADS  Google Scholar 

  43. S. E. Kirkwood, A. C. van Popta, Y. Y. Tsui, and R. Fedosejevs, Appl. Phys. A 81(4), 729 (2005).

    Article  ADS  Google Scholar 

  44. Laser Ablation and Desorption. Experimental Methods in the Physical Sciences, Ed. by R. F. Haglund and J. C. Miller (Academic, London, 1998).

    Google Scholar 

  45. D. E. Roberts, A. Plessis, and L. R. Botha, Appl. Surf. Sci. 256(6), 1784 (2010).

    Article  ADS  Google Scholar 

  46. J. Schou, S. Amoruso, and J. Lunney, in Laser Ablation and Its Applications, Ed. by C. Phipps (Springer, Berlin, 2007), pp. 67–95.

  47. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tunnermann, Appl. Phys. A 94(1), 19 (2009).

    Article  ADS  Google Scholar 

  48. E. Yu. Loktionov and Yu. Yu. Protasov, Inzh. Fiz. No. 8, 3 (2010).

    Google Scholar 

  49. C. Chaleard, V. Detalle, S. Kocon, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, P. Palianov, M. Perdrix, G. Petite, B. Salle, and A. F. Semerok, Proc. SPIE-Int. Soc. Opt. Eng. 3404, 441 (1998).

    Article  ADS  Google Scholar 

  50. N. Zhang, W. Wang, X. Zhu, J. Liu, K. Xu, P. Huang, J. Zhao, R. Li, and M. Wang, Opt. Express 19(9), 8870 (2011).

    Article  ADS  Google Scholar 

  51. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, and R. Velotta, Appl. Phys. Lett. 77(23), 3728 (2000).

    Article  ADS  Google Scholar 

  52. Z. Y. Zheng, J. Zhang, X. Lu, Z. Q. Hao, X. H. Yuan, Z. H. Wang, and Z. Y. Wei, Appl. Phys. A 83(2), 329 (2006).

    Article  ADS  Google Scholar 

  53. Y. Xia, L. Mei, C. Tan, X. Liu, Q. Wang, and S. Yue, Appl. Phys. A 52(6), 425 (1991).

    Article  ADS  Google Scholar 

  54. J. B. Matos, J. Phys. Conf. Ser. 370(1), 012007 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  55. Z. Chen and A. Bogaerts, J. Appl. Phys. 97(6), 063305 (2005).

    Article  ADS  Google Scholar 

  56. L. D’ Alessio, A. Galasso, A. Santagata, R. Teghil, A. R. Villani, P. Villani, and M. Zaccagnino, Appl. Surf. Sci. 208–209, 113 (2003).

    Google Scholar 

  57. O. A. Novodvorsky, O. D. Khramova, E. O. Filippova, and A. K. Shevelev, Proc. SPIE-Int. Soc. Opt. Eng. 3885, 471 (2000).

    Article  ADS  Google Scholar 

  58. B. C. D’ Souza, PhD Thesis (University of Southern California, 2007).

  59. T. Donnelly, J. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, Appl. Phys. A 100(2), 569 (2010).

    Article  ADS  Google Scholar 

  60. D. Ali and M. Z. Butt, Appl. Surf. Sci. 257(7), 2854 (2011).

    Article  ADS  Google Scholar 

  61. I. Konomi, T. Motohiro, and T. Asaoka, J. Appl. Phys. 106(1), 013107 (2009).

    Article  ADS  Google Scholar 

  62. J. Lin, PhD Thesis (Univesity of Alabama, 2004).

    Google Scholar 

  63. L. Velardi, M. V. Siciliano, D. D. Side, and V. Nassisi, Rev. Sci. Instrum. 83(2), B717 (2012).

    Google Scholar 

  64. W. Hu, Y. C. Shin, and G. King, Phys. Plasmas 18(9), 093302 (2011).

    Article  ADS  Google Scholar 

  65. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, Appl. Phys. Lett. 77(16), 2464 (2000).

    Article  ADS  Google Scholar 

  66. N. Vogel, Appl. Surf. Sci. 252(13), 4850 (2006).

    Article  ADS  Google Scholar 

  67. J. Hermann, C. Boulmer-Leborgne, and D. Hong, J. Appl. Phys. 83(2), 691 (1998).

    Article  ADS  Google Scholar 

  68. H. Wenqian, C. S. Yung, and K. Galen, J. Phys. D: Appl. Phys. 45(35), 355204 (2012).

    Article  Google Scholar 

  69. M. Hendijanifard, PhD Thesis (Southern Methodist University, 2011).

  70. H. Haofeng et al., J. Phys. D: Appl. Phys. 44(13), 135202 (2011).

    Article  ADS  Google Scholar 

  71. D. E. Fratanduono, T. R. Boehly, P. M. Celliers, M. A. Barrios, J. H. Eggert, R. F. Smith, D. G. Hicks, G. W. Collins, and D. D. Meyerhofer, J. Appl. Phys. 110(7), 073110 (2011).

    Article  ADS  Google Scholar 

  72. Y.-N. Yang, B. Yang, J.-R. Zhu, Z.-H. Shen, J. Lu, and X.-W. Ni, Chin. Phys. 17(4), 1318 (2008).

    Article  Google Scholar 

  73. Z. Zheng, Optoelectron. Lett. 3(5), 394 (2007).

    Article  ADS  Google Scholar 

  74. B. Wu and Y. C. Shin, J. Appl. Phys. 101(10), 103514 (2007).

    Article  ADS  Google Scholar 

  75. A. V. Pakhomov, D. A. Gregory, and M. S. Thompson, AIAA J. 40(5), 947 (2002).

    Article  ADS  Google Scholar 

  76. B. Xu, Q. Wang, X. Zhang, S. Zhao, Y. Xia, L. Mei, X. Wang, and G. Wang, Appl. Phys. B 57(4), 277 (1993).

    Article  ADS  Google Scholar 

  77. J. Li and Z. Tang, Proc. SPIE-Int. Soc. Opt. Eng. 6279, 62794 (2007).

    ADS  Google Scholar 

  78. A. N. Chumakov, A. M. Petrenko, and N. A. Bosak, Kvantovaya Elektron. 34(10), 948 (2004).

    Article  Google Scholar 

  79. A. Y. Vorobyev and C. Guo, Natur. Sci. 3(6), 488 (2011).

    Article  Google Scholar 

  80. S. Scharring, J. Sinko, A. Sasoh, H.-A. Eckel, and H.-P. Roser, Int. J. Aerospace Innov 3(1), 33 (2011).

    Article  Google Scholar 

  81. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Pis’ma Zh. Tekh. Fiz. 36(13), 8 (2010) [Techn. Phys. Lett. 36 (7), 588 (2010)].

    Google Scholar 

  82. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Dokl. Akad. Nauk 434(1), 38 (2010) [Doklady Phys. 55 (9), 446 (2010)].

    Google Scholar 

  83. J. E. Sinko and C. R. Phipps, Appl. Phys. Lett. 95(13), 131105 (2009).

    Article  ADS  Google Scholar 

  84. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, J. Appl. Phys. 64(3), 1083 (1988).

    Article  ADS  Google Scholar 

  85. C. Phipps, J. Luke, D. Funk, D. Moore, J. Glownia, T. Lippert, Appl. Surf. Sci. 252(13), 4838 (2006).

    Article  ADS  Google Scholar 

  86. E. Yu. Loktionov, A. V. Ovchinnikov, Yu. Yu. Protasov, and D. S. Sitnikov, Zh. Prikl. Spektrosk. 77(4), 604 (2010) [J. Appl. Spectrosc. 77 (4), 561 (2010)].

    Google Scholar 

  87. Y. Zhou, B. Wu, and A. Forsman, J. Appl. Phys. 108(9), 093504 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Loktionov.

Additional information

Original Russian Text © E.Yu. Loktionov, Yu.S. Protasov, Yu.Yu. Protasov, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 5, pp. 856–866.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loktionov, E.Y., Protasov, Y.S. & Protasov, Y.Y. Experimental investigation of the dynamics of laser-induced gas-plasma flows under femtosecond laser ablation of copper in vacuum. Opt. Spectrosc. 115, 764–773 (2013). https://doi.org/10.1134/S0030400X13110155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13110155

Keywords

  • Laser Ablation
  • Femtosecond Laser
  • Plasma Flow
  • Laser Pulse Energy
  • Ultrashort Laser Pulse