Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations

  • 200 Accesses

  • 10 Citations


The local atomic structure of Ni in nickel phthalocyanine was studied by K-edge X-ray absorption fine structure spectroscopy. The obtained inter atomic nickel-nitrogen distance differs from the reference X-ray diffraction data so an additional study was performed within density functional theory framework. The justification of the used theoretical approach was provided by a comparison of theoretical free electron densities of states with experimental Ni K-edge X-ray absorption near edge spectra. The refined Ni local environment retain the reference structure of the molecule except for the length of Ni-N bond which increases to 1.90 Å.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. Moser and A. Thomas, Phthalocyanine Compounds. Monograph Series (Reinhold, 1963).

  2. 2.

    D. Wohrle, Phthalocyanines: Properties and Applications (WILEY-VCH, 1993).

  3. 3.

    N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure, and Function (Cambridge Univ. Press, Cambridge 1998).

  4. 4.

    J. M. Fox, T. J. Katz, S. van Elshocht, T. Verbiest, M. Kauranen, A. Persoons, T. Thongpanchang, T. Krauss, and L. Brus, J. Am. Chem. Soc. 121, 3453 (1999).

  5. 5.

    S. M. O’Flaherty, S. V. Hold, M. J. Cook, T. Torres, Y. Chen, M. Hanack, and W. J. Blau, Adv. Mater. 15, 19 (2003).

  6. 6.

    I. Rosenthal, Photochem. Photobiol. 53(6), 859 (1991).

  7. 7.

    E. A. Lukyanets, J. Porphyrins Phthalocyanines 3, 424 (1999).

  8. 8.

    X. Li, N. J. Long, J. N. Clifford, C. J. Campbell, and J. R. Durrant, New J. Chem. 26, 1076 (2002).

  9. 9.

    A. Boguta, D. Wrobel, T. J. Hoffmann, and P. Mazurkiewicz, Cryst. Res. Technol. 38, 267 (2003).

  10. 10.

    A. S. Manukyan, A. A. Mirzakhanyan, T. I. Butaeva, A. A. Guda, A. V. Soldatov, L. A. Bugaev, H. R. Asatryan, P. G. Baranov, and E. G. Sharoyan, Armen. J. Phys. 3, 272 (2010).

  11. 11.

    J. M. Robertson and I. Woodward, J. Chem. Soc. 37, 219 (1937).

  12. 12.

    V. Mastryukov, C. yu Ruan, M. Fink, Z. Wang, and R. Pachter, J. Mol. Struct. 556, 225 (2000).

  13. 13.

    M.-S. Liao and S. Scheiner, J. Chem. Phys. 114, 9780 (2001).

  14. 14.

    J. C. Speakman, Acta Crystallogr. 6, 784 (1953).

  15. 15.

    C. J. Schramm, R. P. Scaringe, D. R. Stojakovic, B. M. Hoffman, J. A. Ibers, and T. J. Marks, J. Am. Chem. Soc. 102, 6702 (1980).

  16. 16.

    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Meth. Phys. Res., Ser. A 603, 95 (2009).

  17. 17.

    I. B. Borovskii, R. V. Vedrinskii, V. L. Kraizman, and V. P. Sachenko, Usp. Fiz. Nauk 149(2), 275 (1986).

  18. 18.

    D. Koningsberger and R. Prins, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES. Chemical Analysis (Wiley, New York, 1988), p. 688.

  19. 19.

    L. Bugaev, V. Shuvaeva, I. Alekseenko, K. Zhuchkov, and R. Vedrinskii, Phys. Solid State 40, 1001 (1998).

  20. 20.

    B. Ravel and M. Newville, J. Synchrotron Rad. 12, 537 (2005).

  21. 21.

    M. Newville, B. Ravel, D. Haskel, J. Rehr, E. Stern, and Y. Yacoby, Phys. B: Condensed Matter 208, 154 (1995).

  22. 22.

    L. A. Bugaev, A. P. Sokolenko, H. V. Dmitrienko, and A.-M. Flank, Phys. Rev. B 65, 024105 (2001).

  23. 23.

    A. V. Poiarkova and J. J. Rehr, Phys. Rev. B 59, 948 (1999).

  24. 24.

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

  25. 25.

    X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009).

  26. 26.

    X. Gonze, G. M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Zeit. Kristallogr. 220, 558 (2005).

  27. 27.

    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002).

  28. 28.

    S. Goedecker, SIAM J. Sci. Comput. 18, 1605 (1997).

  29. 29.

    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

  30. 30.

    M. Fuchs and M. Scheffler, Comput. Phys. Commun. 11, 67 (1999).

  31. 31.

    C. G. Broyden, Math. Comp. 24, 365 (1970).

  32. 32.

    D. F. Shanno and P. C. Kettler, Math. Comp. 24, 657 (1970).

  33. 33.

    D. Goldfarb, Math. Comp. 24, 23 (1970).

  34. 34.

    D. Cabaret, A. Bordage, A. Juhin, M. Arfaoui, and E. Gaudry, Phys. Chem. Chem. Phys. 12, 5619 (2010).

  35. 35.

    Y. Joly, Phys. Rev. B 63, 125120 (2001).

Download references

Author information

Correspondence to L. A. Avakyan.

Additional information

Original Russian Text © L.A. Avakyan, A.S. Manukyan, A.A. Mirzakhanyan, E.G. Sharoyan, Y.V. Zubavichus, A.L. Trigub, N.A. Kolpacheva, L.A. Bugaev, 2013, published in Optika i Spektroskopiya, 2013, Vol. 114, No. 3, pp. 383–389.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avakyan, L.A., Manukyan, A.S., Mirzakhanyan, A.A. et al. Atomic structure of nickel phthalocyanine probed by X-ray absorption spectroscopy and density functional simulations. Opt. Spectrosc. 114, 347–352 (2013). https://doi.org/10.1134/S0030400X1303003X

Download citation


  • Phthalocyanine
  • Coordination Shell
  • Phthalonitrile
  • NiPc
  • Local Atomic Structure