Skip to main content

Spectral properties of a two-dimensional resonant metal-dielectric photonic crystal


We have studied the transmission spectra of resonant two-dimensional photonic crystals of two types, one of which consists of nanocomposite cylinders that form a square lattice in vacuum and the other of which consists of cylindrical holes that form a square lattice in nanocomposite matrix. The nanocomposite consists of metallic nanospheres that are dispersed in a transparent matrix and is characterized by an effective resonant dielectric permittivity. We show that, depending on the position of the resonant frequency of the nanocomposite with respect to the boundaries of the band gap, there arises either an additional transmission band in the transmission spectrum in the band gap or an additional band gap in the continuous spectrum of the photonic crystal. As the structural and geometric parameters of the system change, both the additional transmission band and the additional band gap are considerably modified. We analyze particular features of the spatial distribution of the electromagnetic field intensity in crystals. The considered effects can be used to extend the possibilities of creating new photonic crystals with specified properties.

This is a preview of subscription content, access via your institution.


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, 1995).

    MATH  Google Scholar 

  2. K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, Berlin, 2004).

    Google Scholar 

  3. K. Busch, S. Lolkes, R. B. Wehrspohn, et al., Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  4. V. F. Shabanov, S. Ya. Vetrov, and A. V. Shabanov, Optics of Real Photonic Crystals: Liquid Crystalline Defects and Inhomogeneities (Izd-vo SO RAN, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  5. S. Ya. Vetrov, I. V. Timofeev, and N. V. Rudakova, Phys. Solid State 52(3), 527 (2010).

    ADS  Article  Google Scholar 

  6. S. Ya. Vetrov, I. V. Timofeev, and N. V. Rudakova, Phys. Solid State 53(1), 141 (2011).

    ADS  Article  Google Scholar 

  7. S. G. Tikhodeev and N. A. Gippius, Usp. Fiz. Nauk 179(9), 1003 (2009).

    Google Scholar 

  8. P. N. Dyachenko and Yu. V. Miklyaev, Optical Memory and Neural Networks (Information Optics) 16(4), 198 (2007).

    Article  Google Scholar 

  9. A. N. Oraevskii and I. E. Protsenko, JETP Lett. 72(9), 445 (2000).

    ADS  Article  Google Scholar 

  10. A. N. Oraevskii and I. E. Protsenko, Kvantovaya Elektron. 31(3), 252 (2001).

    MathSciNet  Article  Google Scholar 

  11. J. B. Pendry, J. Mod. Opt. 41, 209 (1994).

    ADS  Article  Google Scholar 

  12. D. Maystre, Pure Appl. Opt. 3, 975 (1994).

    ADS  Article  Google Scholar 

  13. K. S. Yee, IEEE Trans. Anten. Propagat. 14, 302 (1966).

    ADS  MATH  Article  Google Scholar 

  14. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 1995).

    MATH  Google Scholar 

  15. J. C. Maxwell-Garnett, Phil. Trans. Roy. Soc. A 203, 385 (1904).

    ADS  Article  Google Scholar 

  16. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, Usp. Fiz. Nauk 177(6), 619 (2007).

    Article  Google Scholar 

  17. A. Yu. Vetluzhskii, Tekh. Fiz. Lett. 36(6), 577 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Ya. Vetrov.

Additional information

Original Russian Text © S.Ya. Vetrov, N.V. Rudakova, I.V. Timofeev, V.P. Timofeev, 2012, published in Optika i Spektroskopiya, 2012, Vol. 112, No. 4, pp. 638–646.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vetrov, S.Y., Rudakova, N.V., Timofeev, I.V. et al. Spectral properties of a two-dimensional resonant metal-dielectric photonic crystal. Opt. Spectrosc. 112, 585–593 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Photonic Crystal
  • Transmission Spectrum
  • Dielectric Permittivity
  • Filling Factor
  • Nanocomposite Matrix