Optics and Spectroscopy

, Volume 112, Issue 2, pp 271–279 | Cite as

Water stress assessment of cork oak leaves and maritime pine needles based on LIF spectra

  • A. Lavrov
  • A. B. Utkin
  • J. Marques da Silva
  • Rui Vilar
  • N. M. Santos
  • B. Alves
Nonlinear and Quantum Optics


The aim of the present work was to develop a method for the remote assessment of the impact of fire and drought stress on Mediterranean forest species such as the cork oak (Quercus suber) and maritime pine (Pinus pinaster). The proposed method is based on laser induced fluorescence (LIF): chlorophyll fluorescence is remotely excited by frequency-doubled YAG:Nd laser radiation pulses and collected and analyzed using a telescope and a gated high sensitivity spectrometer. The plant health criterion used is based on the I 685/I 740 ratio value, calculated from the fluorescence spectra. The method was benchmarked by comparing the results achieved with those obtained by conventional, continuous excitation fluorometric method and water loss gravimetric measurements. The results obtained with both methods show a strong correlation between them and with the weight-loss measurements, showing that the proposed method is suitable for fire and drought impact assessment on these two species.


Relative Water Content Laser Induce Fluorescence Plant Efficiency Analysis Needle Sheath Kautsky Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 315, 171 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    E. N. Bodunov, M. N. Berberan-Santos, E. J. N. Pereira, and J.M.G. Martinho, Chem. Phys. 259, 49 (2000).CrossRefGoogle Scholar
  3. 3.
    M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Luminescence Decays with Underlying Distributions of Rate Constants: General Properties and Selected Cases, in Fluorescence of Supermolecules, Polymers and Nanosystems, Ed. by M. N. Berberan-Santos (Springer, Berlin, 2008), p. 67.CrossRefGoogle Scholar
  4. 4.
    H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, Appl. Opt. 33, 2471 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Zuev, N. E. Zueva, and M. V. Grishaev, J. Atm. Ocean. Opt. 22, 42 (2009).Google Scholar
  6. 6.
    E. J. Brach, J. M. Molnar, and J. J. Jasmin, J. Agricultural Engineering Research 22, 45 (1977).CrossRefGoogle Scholar
  7. 7.
    Y. Saito, R. Saito, T. D. Kawahara, A. Nomura, and Satomi Takeda, Forest Ecol. Manag. 128, 129 (2000).CrossRefGoogle Scholar
  8. 8.
    J. T. Richards, A. C. Schuerger, G. Capelle, and J. A. Guikema, Remote Sens. Environ. 84, 323 (2003).CrossRefGoogle Scholar
  9. 9.
    Y. Saito, K. Kurihara, H. Takahashi, F. Kobayashi, T. Kawahara, A. Nomura, and S. Takeda, Opt. Rev. 9, 37 (2002).CrossRefGoogle Scholar
  10. 10.
    E. W. Chappelle, F. M. Wood, Jr., J. E. McMurtrey III, and W. W. Newcomb, Appl. Opt. 23, 134 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    T. P. Astafurova, A. I. Grishin, A. P. Zotikova, V. M. Klimkin, G. G. Matvienko, O. A. Romanovskii, V. G. Sokovikov, V. I. Timofeev, and O. V. Kharchenko, Russian J. Plant Physiol. 48, 518 (2001).CrossRefGoogle Scholar
  12. 12.
    A. I. Grishin, G. M. Krekov, M. M. Krekova, G. G. Matvienko, A. Ya. Sukhanov, V. I. Timofeev, N. L. Fateyeva, and A. A. Lisenko, J. Atm. Ocean. Opt. 20, 328 (2007).Google Scholar
  13. 13.
    N. L. Fateeva and G. G. Matvienko, Proc. SPIE 5232, 652 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    N. L. Fateyeva, A. V. Klimkin, O. V. Bender, A. P. Zotikova, and M. S. Yamburov, J. Atm. Ocean Opt. 19, 189 (2006).Google Scholar
  15. 15.
    H. Kautsky and A. Hirsch, Naturwissenschaften 19, 964 (1931).ADSCrossRefGoogle Scholar
  16. 16.
    M. Kitajima and W. L. Butler, Biochimica et Biophysica Acta 376, 105 (1975).CrossRefGoogle Scholar
  17. 17.
    O. Bjorkman and B. Demmig, Planta 170, 489 (1987).CrossRefGoogle Scholar
  18. 18.
    J. Serôdio, J. Marques da Silva, and F. Catarino, Marine Ecology Progress Series 218, 45 (2001).CrossRefGoogle Scholar
  19. 19.
    M. Havaux and R. Strasser, Plasticity of the Stress Tolerance of the Photosystem II in Vivo, in Research in Photosynthesis, Ed. by N. Murata (Kluwer Academic Publishers, Dordrecht, 1992), Vol. IV, p.149.Google Scholar
  20. 20.
    L. Kova, J. Damkjaer, S. Kereiche, C. Ilioaia, A. V. Ruban, E. J. Boekema, S. Jansson, and P. Horton, The Plant Cell 18, 3106 (2006).CrossRefGoogle Scholar
  21. 21.
    J. Marques da Silva, A. Bernardes da Silva, and M. Pádua, J. Biol. Ed. 41, 178 (2007).CrossRefGoogle Scholar
  22. 22.
    U. Schreiber, U. Schliwa, and W. Bilger, Photosynth. Res. 10, 51 (1986).CrossRefGoogle Scholar
  23. 23.
    S. Nogues and N. R. Baker, J. Exper. Botany 51, 1309 (2000).CrossRefGoogle Scholar
  24. 24.
    J. Marques da Silva and M.C. Arrabaça, Photosynthetica 26, 253 (1992).Google Scholar
  25. 25.
    S. Munne-Bosch and J. Penuelas, Planta 217, 758 (2003).CrossRefGoogle Scholar
  26. 26.
    J. Marques da Silva and M. C. Arrabaça, Physiologia Plantarum 27, 83 (2004).Google Scholar
  27. 27.
    A. E. Carmo-Silva, A. S. Soares, J. Marques da Silva, A. B. da Silva, A. J. Keys, and M. C. Arrabaça, Functional Plant Biology 34, 204 (2007).CrossRefGoogle Scholar
  28. 28.
    Z. Z. Xu, G. S. Zhou, Y. L. Wang, G. X. Han, and Y. J. Li, J. Plant Growth Regul. 27, 83 (2008).CrossRefGoogle Scholar
  29. 29.
    R. Cruz de Carvalho, A. Cunha, and J. Marques da Silva, Acta Physiologiae Plantarum 33, 359 (2011).CrossRefGoogle Scholar
  30. 30.
    N. S. Woo, M. R. Badger, and B. J. Pogson, Plant Methods 4, 27 (2008).CrossRefGoogle Scholar
  31. 31.
  32. 32.
    R. J. Strasser, A. Srivastava, and M. Tsimilli-Michael, The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples, in Probing Photosynthesis: Mechanisms, Regulation and Adaptation, Ed. by M. Yunus, U. Pathre, and P. Mohanthy (CRC Press, Boca Raton, 2000), p. 445.Google Scholar
  33. 33.
    H. D. Barrs, Determination of Water Deficits in Plant Tissues, in Water Deficits and Plant Growth, Ed. by T. T. Kozlowski (Academic, New York, 1968), Vol. 1, p. 235.Google Scholar
  34. 34.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).zbMATHGoogle Scholar
  35. 35.
    A. B. Utkin, A. Lavrov, and R. Vilar, Forest Ecol. Manag. 234S, S38 (2006).CrossRefGoogle Scholar
  36. 36.
    A. B. Utkin, A. Lavrov, and R. Vilar, Opt. Spectrosc. 106, 926 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    A. Lavrov, A. B. Utkin, and R. Vilar, Opt. Spectrosc. 109, 144 (2010).ADSCrossRefGoogle Scholar
  38. 38.

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. Lavrov
    • 1
    • 2
  • A. B. Utkin
    • 1
    • 2
  • J. Marques da Silva
    • 3
  • Rui Vilar
    • 2
    • 4
  • N. M. Santos
    • 1
  • B. Alves
    • 1
  1. 1.INOV-Inesc-InovaçãoLisbonPortugal
  2. 2.Institute of Material and Surface Science and EngineeringLisbonPortugal
  3. 3.Faculty of Science, Department of Plant Biology and BioFIGUniversity of LisbonLisbonPortugal
  4. 4.Department of Chemical and Biological EngineeringInstituto Superior TécnicoLisbonPortugal

Personalised recommendations