Optics and Spectroscopy

, Volume 112, Issue 2, pp 206–211 | Cite as

Excitation transfer between components of molecular layers of cyanine compounds

  • E. N. Kaliteevskaya
  • V. P. Krutyakova
  • T. K. Razumova
  • A. A. StarovoytovEmail author
Condensed-Matter Spectroscopy


Using the example of layers of symmetric polymethine dyes, we have studied the optical excitation energy transfer processes between nanocomponents of a molecular layer. The fluorescence yields and life-times of excited states of monomeric stereoisomers have been estimated, and the stereoisomerization yields have been determined. We show that the excitation transfer yield between the S 1 states of monomeric stereoisomers (tens of percent) is considerably higher than the fluorescence yield (several percent) and depends on the structure of terminal groups of the molecule.


Molecular Layer Trans Isomer Fluorescence Quantum Yield Excitation Transfer Fluorescence Excitation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Kachkovskii, Structure and Color of Polymethine Dyes (Naukova Dumka, Kiev, 1989) [in Russian].Google Scholar
  2. 2.
    A. A. Ishchenko, Structure and Spectral Luminescence Properties of Polymethine Dyes (Naukova Dumka, Kiev, 1994) [in Russian].Google Scholar
  3. 3.
    J. D. Wright, Molecular Crystals (Cambridge Univer. Press, Cambridge, 1995).Google Scholar
  4. 4.
    Yang Wang, Donong Gu, and Fuxi Gan, Phys. Stat. Sol. A 186(1), 71 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Kravets, K. L. Vinnichenko, and O. V. Prygun, Semiconduct. Phys., Quant. Electron. Optoelectron. 3(4), 520 (2000).Google Scholar
  6. 6.
    G. Biesmans, G. Verbeek, B. Verschuere, M. Van der Auverraer, and F. C. Deschryver, Thin Solid Films 169, 127 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Shelkovnikov, A. I. Plekhanov, and N. A. Orlova, Rossiiskie Nanotekhnologii 3(9–10), 36 (2008).Google Scholar
  8. 8.
    M. Surin, Ph. Leclere, S. De Feyter, M. M. S. Abdel-Mottaleb, F. C. De Schryver, O. Henze, W. J. Feast, and R. Lazzaroni, J. Phys. Chem. 110, 7898 (2006).CrossRefGoogle Scholar
  9. 9.
    L. Dahne, J. Am. Chem. Soc. 117, 12855 (1995).CrossRefGoogle Scholar
  10. 10.
    E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Opt. Spectrosc. 97(6), 901 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    E. N. Kaliteevskaya, V. P. Krutyakova, T. K. Razumova, and A. A. Starovoitov, Opt. Spektrosk. 110(3), 363 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    T. K. Razumova, A. N. Tarnovskii, and E. P. Shchelkina, Opt. Spektrosk. 72(5), 1102 (1992).Google Scholar
  13. 13.
    S. I. Gerasimova, E. N. Kaliteevskaya, V. P. Krutyakova, and T. K. Razumova, Opt. Zh. 75(6), 9 (2008).Google Scholar
  14. 14.
    T. Inoue, M. Moriguchi, and T. Ogawa, Thin Solid Films 350, 238 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. N. Kaliteevskaya
    • 1
  • V. P. Krutyakova
    • 1
  • T. K. Razumova
    • 1
  • A. A. Starovoytov
    • 1
    Email author
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations