Skip to main content
Log in

Electromagnetically induced transparency in Λ-system involving D 2 line of Rb atoms confined in sub-micron columns

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The effect of electromagnetically induced transparency (EIT) in a Λ-system formed by rubidium atoms contained in thin (10–60 μm) and extremely thin (0.3–5 μm) cells was studied experimentally. It was found that parameters of the EIT resonance degrade slowly in the case where the frequency of the coupling laser is in resonance with the D 2 transition of rubidium, which enabled the registration of the EIT resonance in a record thin cell with a thickness of L = 390 nm. The specific features of EIT in extremely thin cells reveal themselves when the coupling laser has a frequency detuning Δ from the atomic transition. In this case, the width of the EIT resonance rapidly increases upon an increase in Δ at fixed L (an opposite effect takes place in centimeter-scale cells). It is shown that the width of the EIT resonance is inversely proportional to L in the case of fixed large detuning Δ. The nearly tenfold broadening of the EIT resonance for large values of detuning Δ is caused by the influence of atomic collisions with cell windows on dephasing rate of coherence. The expressions that allow the estimation of the EIT-resonance width for various values of detuning Δ and small values of thickness L are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Agap’ev, M. V. Gornyi, B. G. Matisov, and Yu. V. Rozhdestvenskii, Usp. Fiz. Nauk 163, 1 (1993).

    Article  Google Scholar 

  2. E. Arimondo, Progr. Opt. 35, 257 (1996).

    Article  Google Scholar 

  3. S. Harris, Phys. Today 50(7), 36 (1997).

    Article  Google Scholar 

  4. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).

    Article  ADS  Google Scholar 

  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  6. J. Vanier, Appl. Phys. B 81, 421 (2005).

    Article  ADS  Google Scholar 

  7. D. Petrosyan and Yu. Malakyan, Phys. Rev. A 61, 053820 (2000).

    Article  ADS  Google Scholar 

  8. J. Gea-Banacloche and Y. Li, Phys. Rev. A 51, 576 (1995).

    Article  ADS  Google Scholar 

  9. S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 29, 388 (2004).

    Article  ADS  Google Scholar 

  10. A. Sargsyan, D. Sarkisyan, and A. Papoyan, Phys. Rev. A 73, 033803 (2006).

    Article  ADS  Google Scholar 

  11. Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, et al., J. Opt. Soc. Am. 24, 1829 (2007).

    Article  ADS  Google Scholar 

  12. A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, Opt. Spectrosc. 109(4), 529 (2010).

    Article  ADS  Google Scholar 

  13. D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, Opt. Commun. 200, 201 (2001).

    Article  ADS  Google Scholar 

  14. A. Sargsyan, A. V. Papoyan, D. Sarkisyan, and A. Weis, Europ. Phys. J. Appl. Phys. 48, 20701 (2009).

    Article  Google Scholar 

  15. G. Dutier, A. Yarovitski, S. Saltiel, et al., Europhys. Lett. 63, 35 (2003).

    Article  ADS  Google Scholar 

  16. A. Sargsyan, D. Sarkisyan, D. Staedter, and A. M. Akulshin, Opt. Spectrosc. 101(5), 762 (2006).

    Article  ADS  Google Scholar 

  17. S. Mitra, M. M. Hossain, B. Ray, et al., Opt. Commun. 283, 1500 (2010).

    Article  ADS  Google Scholar 

  18. K. Fukuda, A. Toriyama, A. Ch. Izmailov, and M. Tachikawa, Appl. Phys. B 80, 503 (2005).

    Article  ADS  Google Scholar 

  19. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, et al., Phys. Rev. Lett. 97, 023603 (2006).

    Article  ADS  Google Scholar 

  20. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, et al., Phys. Rev. A 81, 053825 (2010).

    Article  ADS  Google Scholar 

  21. A. N. Litvinov, G. A. Kazakov, and B. G. Matisov, J. Phys. B 42, 165402 (2009).

    Article  ADS  Google Scholar 

  22. T. Baluktsian, C. Urban, T. Bublat, et al., Opt. Lett. 35, 1950 (2010).

    Article  ADS  Google Scholar 

  23. À. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and Ch. Adams, Phys. Rev. A 82, 045806 (2010).

    Article  ADS  Google Scholar 

  24. J. Wang, Y. Wang, S. Yan, et al., Appl. Phys. B 78, 217 (2004).

    Article  ADS  Google Scholar 

  25. D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).

    Article  ADS  Google Scholar 

  26. M. Fichet, G. Dutier, A. Yarovitsky, et al., Europhys. Lett. 77, 54001 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A. Sargsyan, D. Sarkisyan, 2011, published in Optika i Spektroskopiya, 2011, Vol. 111, No. 3, pp. 364–371.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargsyan, A., Sarkisyan, D. Electromagnetically induced transparency in Λ-system involving D 2 line of Rb atoms confined in sub-micron columns. Opt. Spectrosc. 111, 334–341 (2011). https://doi.org/10.1134/S0030400X11090232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X11090232

Keywords

Navigation