Skip to main content
Log in

Calculation of vibrational energy levels of water molecule by summing divergent perturbation theory series

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The Rayleigh-Schrödinger perturbation theory is applied to a calculation of vibrational energy levels of the H2O molecule for isolated states and the states involved in the anharmonic Fermi and Darling-Dennison resonances. It is shown that in spite of the rapid divergence of the perturbation theory series caused by the resonances, the use of the summation methods of Padé, Padé-Borel, and Padé-Hermite and the moments method allows one to obtain quite satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 2: Infrared and Raman Spectra of Polyatomic Molecules (Prentice Hall, New York, 1979; Inostrannaya Literatura, Moscow, 1949).

    Google Scholar 

  2. M. R. Aliev and D. Papousek, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, New York, 1982).

    Google Scholar 

  3. G. H. Hardy, Divergent Series (Oxford Univ. Press, Oxford, 1949).

    MATH  Google Scholar 

  4. Zh.-P. Ramis, Divergent Series and Asymptotic Theories (Institut Komp’yuternykh Issledovanii, Moscow-Izhevsk, 2002) [in Russian].

    Google Scholar 

  5. G. A. Baker, Jr. and P. R. Graves-Morris, Padé Approximants (Cambridge Univ. Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

  6. I. M. Suslov, Zh. Eksp. Teor. Fiz. 127(6), 1350 (2005).

    Google Scholar 

  7. S. Graffi, V. Grecchi, and G. Turchetti, Nuovo Cimento B 4(3), 313 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. D. Bykov and K. V. Kalinin, Izv. TPU 315, 2 (2009).

    Google Scholar 

  9. A. D. Bykov and K. V. Kalinin, Izv. TPU 315, 3 (2009).

    Google Scholar 

  10. A. V. Burenin, O. L. Polyanskii, and S. M. Shchapin, Opt. Spektrosk. 53(3), 666 (1982).

    ADS  Google Scholar 

  11. A. V. Burenin, O. L. Polyanskii, and S. M. Shchapin, Opt. Spektrosk. 54(2), 436 (1983).

    Google Scholar 

  12. V. N. Bryukhanov, Yu. S. Makushkin, Vl. G. Tyuterev, and V. N. Cherepanov, Izv. Vuzov, Ser. Fiz., No. 8, 14 (1981).

  13. A. V. Burenin, Opt. Spektrosk. 66(1), 52 (1989).

    Google Scholar 

  14. V. F. Golovko and Vl. G. Tyuterev, Opt. Atmosfery 3(6), 616 (1990).

    Google Scholar 

  15. O. L. Polyansky, J. Mol. Spectrosc. 112(1), 79 (1985).

    Article  ADS  Google Scholar 

  16. A. V. Burenin and M. Yu. Ryabikin, Opt. Spektrosk. 78(5), 742 (1995).

    Google Scholar 

  17. J. Cizek, V. Spirko, and O. Bludsky, J. Chem. Phys. 99, 7331 (1993).

    Article  ADS  Google Scholar 

  18. V. Spirko and W. Kraemer, J. Mol. Spectrosc. 199, 236 (2000).

    Article  ADS  Google Scholar 

  19. V. I. Starikov, S. A. Tashkun, and V. G. Tuyterev, J. Mol. Spectrosc. 151, 130 (1992).

    Article  ADS  Google Scholar 

  20. A. A. Suvernev and D. Z. Goodson, J. Chem. Phys. 107, 4099 (1997).

    Article  ADS  Google Scholar 

  21. L. E. Fried and G. S. Ezra. J. Chem. Phys. 90, 6378 (1989).

    Article  ADS  Google Scholar 

  22. T. V. Kruglova, A. D. Bykov, and O. V. Naumenko, Opt. Atm. Okeana 14(9), 818 (2001).

    Google Scholar 

  23. D. Z. Goodson and A. V. Sergeev, J. Chem. Phys. 110(16), 8205 (1999).

    Article  ADS  Google Scholar 

  24. A. V. Sergeev, D. Z. Goodson, S. E. Wheeler, and W. D. Allen, J. Chem. Phys. 123(6), 4105 (2005).

    Article  Google Scholar 

  25. I. M. Mills, in Special Periodical Reports, Theoretical Chemistry, Ed. by R. N. V. Dixon (The Chemical Society, London, 1974), Vol. 1.

    Google Scholar 

  26. K. V. Kalinin, Opt. Atm. Okeana 23(8), 656 (2010).

    Google Scholar 

  27. A. V. Sergeev and D. Z. Goodson, J. Phys. A 31, 4301 (1998).

    Article  ADS  MATH  Google Scholar 

  28. S. L. Loi and A. W. McInnes, J. Comp. Appl. Math. 11, 161 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. D. Bykov, O. V. Naumenko, L. Sinitsa, and B. Voronin, J. Quant. Spectrosc. Radiat. Transfer 61(6), 795 (1999).

    Article  ADS  Google Scholar 

  30. A. D. Bykov, B. A. Voronin, O. V. Naumenko, T. M. Petrova, and L. N. Sinitsa, Opt. Atm. Okeana 12(9), 819 (1999).

    Google Scholar 

  31. A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, B. A. Voronin, and B. P. Winnewisser, J. Mol. Spectrosc. 199, 158 (2000).

    Article  ADS  Google Scholar 

  32. A. V. Sergeev and D. Z. Goodson, J. Chem. Phys. 124, 094 111 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bykov.

Additional information

Original Russian Text © A.D. Bykov, K.V. Kalinin, 2011, published in Optika i Spektroskopiya, 2011, Vol. 111, No. 3, pp. 396–404.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, A.D., Kalinin, K.V. Calculation of vibrational energy levels of water molecule by summing divergent perturbation theory series. Opt. Spectrosc. 111, 367–375 (2011). https://doi.org/10.1134/S0030400X11080091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X11080091

Keywords

Navigation