Room-temperature single photon sources with definite circular and linear polarizations

Abstract

We report experimental results of two room-temperature single photon sources with definite polarization based on emitters embedded in either cholesteric or nematic liquid crystal hosts. In the first case, a cholesteric 1-D photonic bandgap microcavity provides circular polarization of definite handedness of single photons from single colloidal semiconductor quantum dots (nanocrystals). In these experiments, the spectral position of the quantum dot fluorescence maximum is at the bandedge of a photonic bandgap structure. The host does not destroy fluorescence antibunching of single emitters. In the second case, photons with definite linear polarization are obtained from single dye molecules doped in a planar-aligned nematic liquid crystal host. The combination of sources with definite linear and circular polarization states of single photons can be used in a practical implementation of the BB84 quantum key distribution protocol.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    New J. Phys. Special Issue Focus on Single Photons on Demand, 6 (2004).

  2. 2.

    P. D. Townsend, Opt. Fiber Technol. 4, 345 (1998).

    Article  ADS  Google Scholar 

  3. 3.

    C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalor, India, 1984), p. 175.

  4. 4.

    S. G. Lukishova, A. W. Schmid, A. J. McNamar, et al., IEEE J. Selected Topics in Quantum Electronics, Special Issue on Quantum Internet Technologies, 9, 1512 (2003).

    Google Scholar 

  5. 5.

    S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. McNamara, R. W. Boyd, et al., J. Modern Opt. Special Issue on Single Photon, 51(9–10), 1535 (2004).

    Google Scholar 

  6. 6.

    S. G. Lukishova, A. W. Schmid, R. Knox, P. Freivald, L. J. Bissell, R. W. Boyd, et al., J. Modern Opt. Special Issue on Single Photon, 54(2–3), 417 (2007).

    Google Scholar 

  7. 7.

    S. G. Lukishova, R. W. Boyd, and C. R. Stroud, US Patent No. 7, 253 871 B2 (Aug. 7, 2007).

  8. 8.

    S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, et al., J. Mod. Opt. Special Issue on Single Photon 56(2–3), 167 (2009).

    Google Scholar 

  9. 9.

    Y. Yamamoto, C. Santori, J. Vuskovic, et al., Progr. Informat., No. 1, 5 (2005).

  10. 10.

    A. J. Bennett et al., Phys. Stat. Sol. B 243,(14), 3730 (2006).

    Article  ADS  Google Scholar 

  11. 11.

    B. Gayral, J. M. Gerard, B. Legrand, et al., Appl. Phys. Lett. 72, 1421 (1998).

    Article  ADS  Google Scholar 

  12. 12.

    A. Daraei, A. Tahraoui, D. Sanvitto, et al., Appl. Phys. Lett. 88, 051113 (2006).

    Article  ADS  Google Scholar 

  13. 13.

    D. C. Unitt, A. J. Bennett, P. Atkinson, et al., Phys. Rev. B 72, 033318 (2005).

    Article  ADS  Google Scholar 

  14. 14.

    D. Englund, D. Fattal, E. Walks, et al., Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  15. 15.

    W.-H. Chang, W.-Y. Chen, H.-S. Chang, et al., Phys. Rev. Lett. 96, 117401 (2006).

    Article  ADS  Google Scholar 

  16. 16.

    J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, Proc. Nat. Acad. Sci. 102(40), 14284 (2005).

    Article  ADS  Google Scholar 

  17. 17.

    H. Huang, A. Dorn, V. Bulovic, and M. Bawendi, Appl. Phys. Lett. 90, 023110 (2007).

    Article  ADS  Google Scholar 

  18. 18.

    Y. Chen, J. Vela, H. Htoon, et al., J. Am. Chem. Soc. 130, 5026 (2008).

    Article  Google Scholar 

  19. 19.

    H. Shi, B. M. Conger, D. Katsis, and S. H. Chen, Liquid Crystals 24, 163 (1998).

    Article  Google Scholar 

  20. 20.

    C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  Google Scholar 

  21. 21.

    B. L. Qu, Z. A. Peng, and X. Peng, Nano Lett. 1, 333 (2001).

    Article  ADS  Google Scholar 

  22. 22.

    S. Chanrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977).

    Google Scholar 

  23. 23.

    J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).

    Article  ADS  Google Scholar 

  24. 24.

    V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).

    Article  ADS  Google Scholar 

  25. 25.

    K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, J. Opt. Soc. Am. B 25(9), 1496 (2008).

    Article  ADS  Google Scholar 

  26. 26.

    S. H. Chen, D. Katsis, A. W. Schmid, et al., Nature 397, 506 (1999).

    Article  ADS  Google Scholar 

  27. 27.

    C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Phys. Chem. B 106, 7619 (2002).

    Article  Google Scholar 

  28. 28.

    QD absorption cross-section was calculated from the extinction coefficient provided by vendor (Invitrogen). Quantum yield value of QD was also provided by vendor.

  29. 29.

    http://www.witec.de/en/products/snom/alpha300s/alpha300Sflyer.pdf.

  30. 30.

    H. M. P. Chen, D. Katsis, and S. H. Chen, Chem. Mater. 15, 2534 (2003).

    Article  Google Scholar 

  31. 31.

    I. Chung, K. T. Shimizu, and M. G. Bawendi, Proc. Nat. Acad. Sci. 100, 405 (2003).

    Article  ADS  Google Scholar 

  32. 32.

    We selected the same terminology for ρ as in I. Chung, K. T. Shimizu, and M. G. Bawendi, Ref. [31] to compare our results with random orientation of molecules reported in Ref. [31] for the same dye. In the book by M. Born and E. Wolf Principles of Optics (Pergamon, New York, 1998) the ratio (I parI perp)/(I par + I perp), is called “degree of polarization.”

    Article  ADS  Google Scholar 

  33. 33.

    B. Stevens and T. Ha, J. Chem. Phys. 120, 3030 (2004).

    Article  ADS  Google Scholar 

  34. 34.

    J. Y. P. Butter, B. R. Crenshaw, C. Weder, and B. Hecht, Chem. Phys. Chem. 7, 261 (2006).

    Google Scholar 

  35. 35.

    F. Vargas, O. Hollricher, O. Marti, et al., J. Chem. Phys. 117, 866 (2002).

    Article  ADS  Google Scholar 

  36. 36.

    S. G. Lukishova, A. W. Schmid, R. P. Knox, et al., Mol. Cryst. Liq. Cryst. 454, 403 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. G. Lukishova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lukishova, S.G., Bissell, L.J., Stroud, C.R. et al. Room-temperature single photon sources with definite circular and linear polarizations. Opt. Spectrosc. 108, 417–424 (2010). https://doi.org/10.1134/S0030400X10030161

Download citation

Keywords

  • Circular Polarization
  • Photonic Bandgap
  • Cholesteric Liquid Crystal
  • Polarization Anisotropy
  • Single Emitter