Abstract
We report experimental results of two room-temperature single photon sources with definite polarization based on emitters embedded in either cholesteric or nematic liquid crystal hosts. In the first case, a cholesteric 1-D photonic bandgap microcavity provides circular polarization of definite handedness of single photons from single colloidal semiconductor quantum dots (nanocrystals). In these experiments, the spectral position of the quantum dot fluorescence maximum is at the bandedge of a photonic bandgap structure. The host does not destroy fluorescence antibunching of single emitters. In the second case, photons with definite linear polarization are obtained from single dye molecules doped in a planar-aligned nematic liquid crystal host. The combination of sources with definite linear and circular polarization states of single photons can be used in a practical implementation of the BB84 quantum key distribution protocol.
This is a preview of subscription content, access via your institution.
References
New J. Phys. Special Issue Focus on Single Photons on Demand, 6 (2004).
P. D. Townsend, Opt. Fiber Technol. 4, 345 (1998).
C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalor, India, 1984), p. 175.
S. G. Lukishova, A. W. Schmid, A. J. McNamar, et al., IEEE J. Selected Topics in Quantum Electronics, Special Issue on Quantum Internet Technologies, 9, 1512 (2003).
S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. McNamara, R. W. Boyd, et al., J. Modern Opt. Special Issue on Single Photon, 51(9–10), 1535 (2004).
S. G. Lukishova, A. W. Schmid, R. Knox, P. Freivald, L. J. Bissell, R. W. Boyd, et al., J. Modern Opt. Special Issue on Single Photon, 54(2–3), 417 (2007).
S. G. Lukishova, R. W. Boyd, and C. R. Stroud, US Patent No. 7, 253 871 B2 (Aug. 7, 2007).
S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, et al., J. Mod. Opt. Special Issue on Single Photon 56(2–3), 167 (2009).
Y. Yamamoto, C. Santori, J. Vuskovic, et al., Progr. Informat., No. 1, 5 (2005).
A. J. Bennett et al., Phys. Stat. Sol. B 243,(14), 3730 (2006).
B. Gayral, J. M. Gerard, B. Legrand, et al., Appl. Phys. Lett. 72, 1421 (1998).
A. Daraei, A. Tahraoui, D. Sanvitto, et al., Appl. Phys. Lett. 88, 051113 (2006).
D. C. Unitt, A. J. Bennett, P. Atkinson, et al., Phys. Rev. B 72, 033318 (2005).
D. Englund, D. Fattal, E. Walks, et al., Phys. Rev. Lett. 95, 013904 (2005).
W.-H. Chang, W.-Y. Chen, H.-S. Chang, et al., Phys. Rev. Lett. 96, 117401 (2006).
J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, Proc. Nat. Acad. Sci. 102(40), 14284 (2005).
H. Huang, A. Dorn, V. Bulovic, and M. Bawendi, Appl. Phys. Lett. 90, 023110 (2007).
Y. Chen, J. Vela, H. Htoon, et al., J. Am. Chem. Soc. 130, 5026 (2008).
H. Shi, B. M. Conger, D. Katsis, and S. H. Chen, Liquid Crystals 24, 163 (1998).
C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
B. L. Qu, Z. A. Peng, and X. Peng, Nano Lett. 1, 333 (2001).
S. Chanrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977).
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, J. Opt. Soc. Am. B 25(9), 1496 (2008).
S. H. Chen, D. Katsis, A. W. Schmid, et al., Nature 397, 506 (1999).
C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Phys. Chem. B 106, 7619 (2002).
QD absorption cross-section was calculated from the extinction coefficient provided by vendor (Invitrogen). Quantum yield value of QD was also provided by vendor.
http://www.witec.de/en/products/snom/alpha300s/alpha300Sflyer.pdf.
H. M. P. Chen, D. Katsis, and S. H. Chen, Chem. Mater. 15, 2534 (2003).
I. Chung, K. T. Shimizu, and M. G. Bawendi, Proc. Nat. Acad. Sci. 100, 405 (2003).
We selected the same terminology for ρ as in I. Chung, K. T. Shimizu, and M. G. Bawendi, Ref. [31] to compare our results with random orientation of molecules reported in Ref. [31] for the same dye. In the book by M. Born and E. Wolf Principles of Optics (Pergamon, New York, 1998) the ratio (I par − I perp)/(I par + I perp), is called “degree of polarization.”
B. Stevens and T. Ha, J. Chem. Phys. 120, 3030 (2004).
J. Y. P. Butter, B. R. Crenshaw, C. Weder, and B. Hecht, Chem. Phys. Chem. 7, 261 (2006).
F. Vargas, O. Hollricher, O. Marti, et al., J. Chem. Phys. 117, 866 (2002).
S. G. Lukishova, A. W. Schmid, R. P. Knox, et al., Mol. Cryst. Liq. Cryst. 454, 403 (2006).
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Lukishova, S.G., Bissell, L.J., Stroud, C.R. et al. Room-temperature single photon sources with definite circular and linear polarizations. Opt. Spectrosc. 108, 417–424 (2010). https://doi.org/10.1134/S0030400X10030161
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0030400X10030161