Optics and Spectroscopy

, Volume 108, Issue 3, pp 417–424 | Cite as

Room-temperature single photon sources with definite circular and linear polarizations

  • S. G. LukishovaEmail author
  • L. J. Bissell
  • C. R. StroudJr.
  • R. W. Boyd
Single-Photon Sources


We report experimental results of two room-temperature single photon sources with definite polarization based on emitters embedded in either cholesteric or nematic liquid crystal hosts. In the first case, a cholesteric 1-D photonic bandgap microcavity provides circular polarization of definite handedness of single photons from single colloidal semiconductor quantum dots (nanocrystals). In these experiments, the spectral position of the quantum dot fluorescence maximum is at the bandedge of a photonic bandgap structure. The host does not destroy fluorescence antibunching of single emitters. In the second case, photons with definite linear polarization are obtained from single dye molecules doped in a planar-aligned nematic liquid crystal host. The combination of sources with definite linear and circular polarization states of single photons can be used in a practical implementation of the BB84 quantum key distribution protocol.


Circular Polarization Photonic Bandgap Cholesteric Liquid Crystal Polarization Anisotropy Single Emitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    New J. Phys. Special Issue Focus on Single Photons on Demand, 6 (2004).Google Scholar
  2. 2.
    P. D. Townsend, Opt. Fiber Technol. 4, 345 (1998).CrossRefADSGoogle Scholar
  3. 3.
    C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalor, India, 1984), p. 175.Google Scholar
  4. 4.
    S. G. Lukishova, A. W. Schmid, A. J. McNamar, et al., IEEE J. Selected Topics in Quantum Electronics, Special Issue on Quantum Internet Technologies, 9, 1512 (2003).Google Scholar
  5. 5.
    S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. McNamara, R. W. Boyd, et al., J. Modern Opt. Special Issue on Single Photon, 51(9–10), 1535 (2004).Google Scholar
  6. 6.
    S. G. Lukishova, A. W. Schmid, R. Knox, P. Freivald, L. J. Bissell, R. W. Boyd, et al., J. Modern Opt. Special Issue on Single Photon, 54(2–3), 417 (2007).Google Scholar
  7. 7.
    S. G. Lukishova, R. W. Boyd, and C. R. Stroud, US Patent No. 7, 253 871 B2 (Aug. 7, 2007).Google Scholar
  8. 8.
    S. G. Lukishova, L. J. Bissell, V. M. Menon, N. Valappil, M. A. Hahn, C. M. Evans, et al., J. Mod. Opt. Special Issue on Single Photon 56(2–3), 167 (2009).Google Scholar
  9. 9.
    Y. Yamamoto, C. Santori, J. Vuskovic, et al., Progr. Informat., No. 1, 5 (2005).Google Scholar
  10. 10.
    A. J. Bennett et al., Phys. Stat. Sol. B 243,(14), 3730 (2006).CrossRefADSGoogle Scholar
  11. 11.
    B. Gayral, J. M. Gerard, B. Legrand, et al., Appl. Phys. Lett. 72, 1421 (1998).CrossRefADSGoogle Scholar
  12. 12.
    A. Daraei, A. Tahraoui, D. Sanvitto, et al., Appl. Phys. Lett. 88, 051113 (2006).CrossRefADSGoogle Scholar
  13. 13.
    D. C. Unitt, A. J. Bennett, P. Atkinson, et al., Phys. Rev. B 72, 033318 (2005).CrossRefADSGoogle Scholar
  14. 14.
    D. Englund, D. Fattal, E. Walks, et al., Phys. Rev. Lett. 95, 013904 (2005).CrossRefADSGoogle Scholar
  15. 15.
    W.-H. Chang, W.-Y. Chen, H.-S. Chang, et al., Phys. Rev. Lett. 96, 117401 (2006).CrossRefADSGoogle Scholar
  16. 16.
    J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, Proc. Nat. Acad. Sci. 102(40), 14284 (2005).CrossRefADSGoogle Scholar
  17. 17.
    H. Huang, A. Dorn, V. Bulovic, and M. Bawendi, Appl. Phys. Lett. 90, 023110 (2007).CrossRefADSGoogle Scholar
  18. 18.
    Y. Chen, J. Vela, H. Htoon, et al., J. Am. Chem. Soc. 130, 5026 (2008).CrossRefGoogle Scholar
  19. 19.
    H. Shi, B. M. Conger, D. Katsis, and S. H. Chen, Liquid Crystals 24, 163 (1998).CrossRefGoogle Scholar
  20. 20.
    C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
  21. 21.
    B. L. Qu, Z. A. Peng, and X. Peng, Nano Lett. 1, 333 (2001).CrossRefADSGoogle Scholar
  22. 22.
    S. Chanrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977).Google Scholar
  23. 23.
    J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).CrossRefADSGoogle Scholar
  24. 24.
    V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).CrossRefADSGoogle Scholar
  25. 25.
    K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, J. Opt. Soc. Am. B 25(9), 1496 (2008).CrossRefADSGoogle Scholar
  26. 26.
    S. H. Chen, D. Katsis, A. W. Schmid, et al., Nature 397, 506 (1999).CrossRefADSGoogle Scholar
  27. 27.
    C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Phys. Chem. B 106, 7619 (2002).CrossRefGoogle Scholar
  28. 28.
    QD absorption cross-section was calculated from the extinction coefficient provided by vendor (Invitrogen). Quantum yield value of QD was also provided by vendor.Google Scholar
  29. 29.
  30. 30.
    H. M. P. Chen, D. Katsis, and S. H. Chen, Chem. Mater. 15, 2534 (2003).CrossRefGoogle Scholar
  31. 31.
    I. Chung, K. T. Shimizu, and M. G. Bawendi, Proc. Nat. Acad. Sci. 100, 405 (2003).CrossRefADSGoogle Scholar
  32. 32.
    We selected the same terminology for ρ as in I. Chung, K. T. Shimizu, and M. G. Bawendi, Ref. [31] to compare our results with random orientation of molecules reported in Ref. [31] for the same dye. In the book by M. Born and E. Wolf Principles of Optics (Pergamon, New York, 1998) the ratio (I parI perp)/(I par + I perp), is called “degree of polarization.”CrossRefADSGoogle Scholar
  33. 33.
    B. Stevens and T. Ha, J. Chem. Phys. 120, 3030 (2004).CrossRefADSGoogle Scholar
  34. 34.
    J. Y. P. Butter, B. R. Crenshaw, C. Weder, and B. Hecht, Chem. Phys. Chem. 7, 261 (2006).Google Scholar
  35. 35.
    F. Vargas, O. Hollricher, O. Marti, et al., J. Chem. Phys. 117, 866 (2002).CrossRefADSGoogle Scholar
  36. 36.
    S. G. Lukishova, A. W. Schmid, R. P. Knox, et al., Mol. Cryst. Liq. Cryst. 454, 403 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. G. Lukishova
    • 1
    Email author
  • L. J. Bissell
    • 1
  • C. R. StroudJr.
    • 1
  • R. W. Boyd
    • 1
  1. 1.The Institute of Optics University of RochesterRochesterUSA

Personalised recommendations