Skip to main content
Log in

Modeling of optical radiation energy distribution in plant tissue

  • Optics and Spectroscopy in Biomedical Investigations
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A three-dimensional mathematical model of interactions of optical radiation with plant tissue taking into account its structural inhomogeneity, spectral properties, and the effects of fluorescence is constructed. The developed model is implemented using the statistical Monte Carlo method for the Henyey-Greenstein phase function. The dependence of differential backscattering and fluorescence coefficients on the concentration of photosynthetic pigments (chlorophylls) is numerically studied. It is demonstrated that numerical characteristics agree with results of physical experiment. The approximate solution based on the expansion of the diffusion and fluorescence radiation fluxes into a series in terms of a small parameter is found. This expansion makes it possible to calculate the field of backscattered radiation with satisfactory accuracy and to qualitatively correctly describe the experimentally observed dependences of the fluorescence coefficient in the region of high chlorophyll concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Vogelmann, Plant Mol. Biol. 44, 231 (1993).

    Article  Google Scholar 

  2. M. N. Merzlyak, Fiziol. Rastenii 44(5), 707 (1997).

    Google Scholar 

  3. M. N. Mezlyak and A. A. Gitelson, Geophys. Rev. Lett. 33, 1 (2006).

    Google Scholar 

  4. G. G. Matvienko, A. I. Grishin, O. V. Kharchenko, and O. A. Romanovskii, Opt. Engin. 46(5), 537 (2006).

    Google Scholar 

  5. F. Lage-Pinto, J. G. Oliveira, M. Da Cunha, et al., Environ. Exp. Botany 64, 307 (2008).

    Article  Google Scholar 

  6. V. P. Zakharov, O. N. Makurina, E. V. Timchenko, P. E. Timchenko, S. P. Kotova, and R. V. Valiullov, Vestn. Samarsk. Gos. Aérokosm. Univ. No. 2, 261 (2008).

  7. S. Jansson, Biochim. Biophys. Acta 1184, 1 (1994).

    Article  Google Scholar 

  8. G. Zucchelli, R. C. Jennings, F. M. Garlaschi, et al., Biophys 82, 378 (2002).

    Article  Google Scholar 

  9. G. Baranoski and J. Rokne, Computer Graphics Forum 16, 3 (1997).

    Article  Google Scholar 

  10. V. P. Zakharov, I. A. Bratchenko, and E. V. Timchenko, Vestn. Samarsk. Gos. Aérokosm. Univ. No. 2, 117 (2008).

  11. A. Ishimaru, Wave Propagation and Scattering in Random Media, 2nd ed. (Oxford Univ. Press, Oxford, 1997; Mir, Moscow, 1981).

    MATH  Google Scholar 

  12. C. R. De Olivera, Proc.SPIE 3194, 212 (1997).

    Article  ADS  Google Scholar 

  13. N. B. Delone, Interaction of Laser Radiation with Matter (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. Y. Govaerts, S. Jaquemoud, M. Verstraete, and S. Ustin, Appl. Opt. 35, 6585 (1996).

    Article  ADS  Google Scholar 

  15. V. P. Zakharov, E. V. Vorob’eva, I. A. Bratchenko, P. E. Timchenko, and S. P. Kotova, Izv. Samarsk. Nauchn. Tsentra 9(3), 620 (2007).

    Google Scholar 

  16. B. Genty, J. Wonders, and N. Baker, Photosyn. Res. 26, 133 (1990).

    Article  Google Scholar 

  17. G. H. Krause and E. Weis, Ann. Rev. Plant Physiol. Plant Mol. 42, 313 (1991).

    Article  Google Scholar 

  18. S. Jacquemoud, S. L. Ustin, J. Verdebout, et al., Remote Sensing Environ. 56, 194 (1996).

    Article  Google Scholar 

  19. J. W. Rouse, R. W. Haas, J. A. Schell, et al., NASA/GSFC Final Report, 1 (1974).

  20. J. Chen, Can. J. Remote Sens. 22, 229 (1996).

    Google Scholar 

  21. A. R. Huete, H. Q. Liu, K. Batchily, and W. van Leeuwen, Remote Sens. Environ. 59, 440 (1997).

    Article  Google Scholar 

  22. G. Rondeaux, M. Steven, and F. Baret, Remote Sens. Environ. 55, 95 (1996).

    Article  Google Scholar 

  23. D. Haboudane, J. R. Miller, N. Tremblay, et al., Remote Sens. Environ. 81, 416 (2002).

    Article  Google Scholar 

  24. A. A. Gitelson, Y. J. Kaufman, and M. Merzlyak, Remote Sens. Environ. 58, 289 (1996).

    Article  Google Scholar 

  25. M. N. Merzlyak, A. A. Gitel’son, O. B. Chivkunova, A. E. Solovchenko and S. I. Pogosyan, Fiziol. Rasten. 50(5), 785 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.P. Zakharov, I.A. Bratchenko, A.R. Sindyaeva, E.V. Timchenko, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 6, pp. 953–958.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, V.P., Bratchenko, I.A., Sindyaeva, A.R. et al. Modeling of optical radiation energy distribution in plant tissue. Opt. Spectrosc. 107, 903–908 (2009). https://doi.org/10.1134/S0030400X0912011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X0912011X

Keywords

Navigation