Skip to main content
Log in

Fused silica as a composite nanostructured material

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A method for calculating the refractive index of optical fused silica by applying the model of effective permittivity of composite homogeneous media is proposed and realized. The calculation was performed using the tabular data of the refractive index of crystalline α quartz and the ratio of the quartz glass and α quartz densities. It was suggested that fused silica contains nanosized pores with a glass filling number q immersed in a matrix with a density differing from the α quartz density by a factor of κ, where κ is slightly less than unity. It was established that the Maxwell-Garnett model makes it possible to calculate the refractive index of quartz glass and its dispersion in the transparency range (404 nm ≤ λ ≤ 671 nm) with a deviation less than 0.0002 from the tabular values. The calculated and experimental values coincide at q = 0.155 and κ = 0.986.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  3. A. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarev, Usp. Fiz. Nauk 177(6), 619 (2007).

    Article  Google Scholar 

  4. A. L. Stepanov, Rev. Adv. Mater. Sci. 4, 123 (2003).

    Google Scholar 

  5. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  6. J. C. Maxwell Garnet, Philos. Trans. Roy. Soc. A 203, 385 (1904).

    Article  ADS  Google Scholar 

  7. R. S. Sennet and W. W. Scott, J. Opt. Soc. Am. 40(1), 203 (1950).

    Article  ADS  Google Scholar 

  8. G. V. Rozenberg, Optics of Thin-Layer Coatings (Glav. Izd. Fiz.-Mat. Lit., Moscow, 1958) [in Russian].

    Google Scholar 

  9. Z. H. Meiksin, in Physics of Thin Films (Mir, Moscow, 1978) [in Russian].

    Google Scholar 

  10. D. E. Aspnes, Am. J. Phys. 50(8), 704 (1982).

    Article  ADS  Google Scholar 

  11. D. Evans, Phys. Rev. B 32(6), 4169 (1985).

    Article  ADS  Google Scholar 

  12. D. A. G. Bruggeman, Ann. Phys. 5(24), 636 (1935).

    Article  Google Scholar 

  13. P. Sheng, Phys. Rev. Lett. 45(1), 60 (1980).

    Article  ADS  Google Scholar 

  14. P. Sheng, Phys. Rev. B 22(12), 6364 (1980).

    Article  ADS  Google Scholar 

  15. J. E. Spanier and I. P. Herman, Phys. Rev. B 61(15), 10137 (2000).

    Article  Google Scholar 

  16. G. Mie, Ann. Phys. 25, 377 (1908).

    Article  Google Scholar 

  17. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants (Longmans, New York, 1959; GIFML, Moscow, 1962).

    Google Scholar 

  18. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnov, Optical Constants of Natiural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  19. V. K. Leko and O. V. Mazurin, Properties of Quartz Glass (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  20. M. Ya. Kruger, V. A. Panov, V. V. Kulagin, et al., Hand-book for a Designer of Opticomechanical Instruments (Mashgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  21. S. P. Glagolev, Quartz Glass, Its Properties, Production, and Application (Gos. Khim.-Tekhn. Izd., Moscow, 1934) [in Russian].

    Google Scholar 

  22. J. D. Maccenzie, J. Am. Ceram. Soc. 46(10), 461 (1963).

    Article  Google Scholar 

  23. J. D. Maccenzie, J. Am. Ceram. Soc. 47(2), 76 (1964).

    Article  Google Scholar 

  24. W. Cai et al., J. Nanopart. Res. 3, 443 (2001).

    Article  Google Scholar 

  25. L. A. Ageev, V. K. Miloslavsky, and E. D. Makovetsky, Opt. Spektrosk. 102(3), 489 (2007) [Opt. Spectrosc. 102, 442 (2007)].

    Article  Google Scholar 

  26. J. M. Ziman, Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979).

    Google Scholar 

  27. J. Lerme et al., Eur. Phys. J. 4, 95 (1998).

    ADS  Google Scholar 

  28. H. Hovel et al., Phys. Rev. B 48(44), 18178 (1993).

    Article  ADS  Google Scholar 

  29. A. Feltz, Amorphe und Glasartige Anorganische Fest-körper (Akademie, Berlin, 1983; Mir, Moscow, 1986).

    Google Scholar 

  30. W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).

    Article  Google Scholar 

  31. M. G. Garnica-Romo, et al., J. Mater. Res. 16(7), 2007 (2001).

    Article  ADS  Google Scholar 

  32. L. L. Diaz-Flores, et al., Phys. Status Solidi C 4(6), 2016 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Miloslavsky.

Additional information

Original Russian Text © V.K. Miloslavsky, E.D. Makovetsky, L.A. Ageev, K.S. Beloshenko, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 5, pp. 854–859.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miloslavsky, V.K., Makovetsky, E.D., Ageev, L.A. et al. Fused silica as a composite nanostructured material. Opt. Spectrosc. 107, 811–815 (2009). https://doi.org/10.1134/S0030400X09110204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X09110204

Keywords

Navigation