Skip to main content
Log in

Potential of pulsed excilamps for remote sounding of polluted atmosphere

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The results are discussed of a closed numerical experiment on lidar sounding of the concentration of small gas impurities in the tropospheric layer of the atmosphere based on a new LIDAR-DOAS hybrid technology that uses a XeCl* excilamp as a source of pulsed broadband radiation. Quantitative estimates con-firm the promise of the approach, which expands the potential of the classical scheme of differential optical absorption spectroscopy (DOAS) with respect to the remote monitoring and localization of hazardous anthropogenic emissions of toxic gases. Combining the Monte Carlo method with the genetic algorithm for solving the inverse problem of reconstructing the profiles of sought gas constituents of the troposphere makes it possible to strictly quantitatively predict the efficiency of new promising lidar systems for monitoring the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spectroscopic Methods of Sounding of Atmosphere, Ed. by I. V. Samokhvalov (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  2. U. Platt and D. Perner, J. Geophys. Res. 85, 7453 (1980).

    Article  ADS  Google Scholar 

  3. U. Platt, in Air Monitoring Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (Wiley, Chichester, 2000), pp. 1936–1959.

    Google Scholar 

  4. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Application (Springer, Berlin, 2008).

    Google Scholar 

  5. G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, Opt. Atmos. Okeana 22(4), (2009).

  6. S. A. Trushin, W. Fuss, K. Kosma, and W. E. Schmid, Appl. Phys. B 85, 1 (2006).

    Article  ADS  Google Scholar 

  7. A. A. Lisenko and M. I. Lomaev, Opt. Atmos. Okeana 15(3), 293 (2002).

    Google Scholar 

  8. E. Arnold, M. I. Lomaev, A. A. Lisenko, V. S. Skakun, V. F. Tarasenko, A. N. Tkachev, D. V. Shitts, and S. I. Yakovlenko, Laser Phys. 14(6), 809 (2004).

    Google Scholar 

  9. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, Pis’ma Zh. Tekh. Fiz. 32, 74 (2006).

    Google Scholar 

  10. M. I. Lomaev, É. A. Sosnin, V. F. Tarasenko, D. V. Shitts, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, Prib. Tekh. Eksp. 49(5), 5 (2006).

    Google Scholar 

  11. É. A. Sosnin, M. V. Erofeev, A. A. Lisenko, V. F. Tarasenko, and D. V. Shitts, Opt. Zh. 69(7), 77 (2002).

    Google Scholar 

  12. M. I. Lomaev, V. S. Skakun, É. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, Usp. Fiz. Nauk 173, 201 (2003).

    Article  Google Scholar 

  13. M. V. Erofeev and V. F. Tarasenko, J. Appl. Phys. D 39, 3609 (2006).

    Article  ADS  Google Scholar 

  14. J. F. Noxon, Science 189, 547 (1975).

    Article  ADS  Google Scholar 

  15. J. F. Noxon, J. Geophys. Res. 84, 5047 (1979).

    Article  ADS  Google Scholar 

  16. U. Platt, D. Perner, and H. W. Patz, J. Geophys. Res. 84, 6329 (1979).

    Article  ADS  Google Scholar 

  17. L. S. Rothman, D. Jacquemart, A. Barbe, et al., J. Quant. Spectr. Radiat. Transfer 96, 139 (2005).

    Article  ADS  Google Scholar 

  18. J. Kasparian, M. Rodrigues, G. Mejean, et al., Science 301, 61 (2003).

    Article  ADS  Google Scholar 

  19. R. L. Jones, SPIE Opt. Methods Atm. Chem. 15, 393 (1992).

    Google Scholar 

  20. K. Strong and R. L. Jones, Appl. Opt. 34, 6223 (1995).

    Article  ADS  Google Scholar 

  21. I. M. Povey, A. M. South, C. Hill, et al., J. Geophys. Res. 103, 3369 (1998).

    Article  ADS  Google Scholar 

  22. H. Wille, M. Rodrigues, and J. Kasparian, Eur. Phys. J. Appl. Phys. 20, 183 (2002).

    Article  ADS  Google Scholar 

  23. T. Somekawa, C. Yamanaka, M. Fujita, and M. C. Galvez, Jpn. J. Appl. Phys. 47, 2155 (2008).

    Article  ADS  Google Scholar 

  24. W. M. Irvine, Bull. Astron. Inst. Nether 17, 266 (1964).

    ADS  Google Scholar 

  25. B. R. Lienert, J. N. Porter, and S. K. Sharma, Appl. Opt. 40, 3476 (2001).

    Article  ADS  Google Scholar 

  26. N. S. Mera, L. Elliott, and D. B. Ingham, Comput. Mechanics 33, 254 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. G. M. Krekov, V. M. Orlov, and V. V. Belov, Imitating Modeling in Problems of Optical Remote Sounding (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  28. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Krekov.

Additional information

Original Russian Text © G.M. Krekov, M.M. Krekova, A.A. Lisenko, A.Ya. Sukhanov, M.V. Erofeev, M.I. Lomaev, V.F. Tarasenko, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 5, pp. 736–744.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekov, G.M., Krekova, M.M., Lisenko, A.A. et al. Potential of pulsed excilamps for remote sounding of polluted atmosphere. Opt. Spectrosc. 107, 696–704 (2009). https://doi.org/10.1134/S0030400X09110046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X09110046

Keywords

Navigation