Skip to main content
Log in

CARS spectroscopy of radio-frequency discharge plasma in hydrogen

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The population of the vibrational and rotational levels of hydrogen is studied by the narrow-and broadband CARS spectroscopy in capacitive and inductive-capacitive radio-frequency discharge plasmas. Computational codes are developed to analyze and process CARS spectra of hydrogen obtained under conditions of disturbance of thermodynamic equilibrium over internal degrees of freedom of molecules. To interpret the measurement results, a model is developed, which makes it possible to calculate the vibrational temperature in radio-frequency discharge plasmas. It is shown that the broadband CARS spectrometer in combination with the software package developed appreciably reduces the time necessary to determine the vibrational and rotational temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plasma Technology, Fundamentals, and Applications, Ed. by M. Capitelli and C. N. Y. Gorse (Plenum, New York, 1992).

    Google Scholar 

  2. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges: Physics Experimental Technique, Applications (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  3. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, in Plasma Kinetics in Atmospheric Gases (Springer, Berlin, 2000).

    Google Scholar 

  4. Raman Spectroscopy of Gases and Liquids, Ed. by A. Weber (Springer, New York, 1979).

    Google Scholar 

  5. S. A. Druet and J. P. E. Taran, Prog. Quantum. Electron. 7(1), 1 (1981).

    Article  Google Scholar 

  6. W. Y. Tolles, J. W. Nibler, J. R. McDonald, and A. B. Harvey, Appl. Spectrosc. 31, 37 (1997).

    Google Scholar 

  7. J. W. Nibler, J. R. McDonald, and A. B. Harvey, Opt. Commun. 18(3), 371 (1976).

    Article  ADS  Google Scholar 

  8. J. A. Shirley and R. J. Hall, J. Chem. Phys. 67(6), 2419 (1977).

    Article  ADS  Google Scholar 

  9. V. Kornas, Plasma Chem. Plasma Process. 11(2), 171 (1991).

    Article  Google Scholar 

  10. S. O. Hay, W. C. Roman, and M. B. Colket III, J. Mater. Res. 5(11), 324 (1990).

    Article  Google Scholar 

  11. K. H. Chen, M.-C. Chuang, C. Murray Penney, and W. F. Banholzer, J. Appl. Phys. 71, 1485 (1992).

    Article  ADS  Google Scholar 

  12. C. F. Kaminski and P. Evart, Appl. Phys. B 64, 103 (1997).

    Article  ADS  Google Scholar 

  13. K. E. Bertagnolli and R. P. Lucht, in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, 1996), pp. 1825–1833.

    Google Scholar 

  14. M. Ganz, N. Dorval, M. Lefebvre, and F. Laglais, J. Electrochem. Soc. 143(5), 1654 (1996).

    Article  Google Scholar 

  15. V. A. Shakhatov, O. De Pascale, and M. Capitelli, Eur. Phys. J. D 29(20), 230 (2004).

    Google Scholar 

  16. V. A. Shakhatov, O. De Pascale, M. Capitelli, et al., Phys. Plasmas 12(2), 5436 (2005).

    Article  Google Scholar 

  17. M. Pealat, J-P. Taran, M. Bacal, and F. Hilion, J. Chem. Phys. 82(11), 4943 (1985).

    Article  ADS  Google Scholar 

  18. T. Gans, Plasma Sources Sci. Technol. 10, 17 (2001).

    Article  ADS  Google Scholar 

  19. B. U. Asanov, V. N. Ochkin, S. Yu. Savinov, et al., Sov. Phys. Lebedev Inst. Rep. (USA), No. 9, 40 (1986).

  20. V. N. Ochkin, S. Yu. Savinov, N. N. Sobolev, et al., Zh. Tekh. Fiz. 58(7), 1283 (1988) [Sov. Phys. Tech. Phys. 33 (7), 763 (1988)].

    Google Scholar 

  21. M. Lefebvre, M. Pealat, and J. P. Taran, Pure Appl. Chem. 64(5), 685 (1992).

    Google Scholar 

  22. S. A. Astashkevich, M. V. Kalachev, B. P. Lavrov, et al., Opt. Spektrosk. 87(2), 289 (1999) [Opt. Spectrosc. 87 (2), 203 (1999)].

    Google Scholar 

  23. M. G. Berdichevskiĭ and V. V. Marusin, Izv. Sib. Otd. Akad. Nauk SSSR, No. 3, 37 (1982).

  24. J. C. Luthe, E. J. Beiting, and F. Y. Yueh, Comput. Phys. Commun. 42, 73 (1986).

    Article  ADS  Google Scholar 

  25. P. Huber-Walchli and J. W. Nibler, J. Chem. Phys. 76(1), 273 (1982).

    Article  ADS  Google Scholar 

  26. R. A. J. Keijser, J. R. Lombardi, K. D. Van Den Hout, et al., Physica A 76, 585 (1974).

    Article  Google Scholar 

  27. A. Rahn and R. L. Farrow, Phys. Rev. A 43(11), 6075 (1991).

    Article  ADS  Google Scholar 

  28. C. Gorse, M. Capitelli, and A. Ricard, J. Chem. Phys. 82(4), 1900 (1985).

    Article  ADS  Google Scholar 

  29. C. Gorse, M. Capitelli, M. Bacal, et al., Chem. Phys. 117, 177 (1987).

    Article  Google Scholar 

  30. L. S. Polak, M. Ya. Gol’denberg, and A. A. Levitskiĭ, Computational Methods in Chemical Kinetics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  31. J. R. Hiskes and A. M. Karo, Appl. Phys. Lett. 54(6), 508 (1980).

    Article  ADS  Google Scholar 

  32. C. Gorse, R. Celiberto, M. Cacciatore, et al., Chem. Phys. 161, 211 (1992).

    Article  Google Scholar 

  33. K. Hassouni, A. Gicquel, and M. Capitelli, Chem. Phys. Lett. 290, 502 (1998).

    Article  Google Scholar 

  34. S. Longo and A. Milella, Chem. Phys. 274, 219 (2001).

    Article  Google Scholar 

  35. K. Hassouni, M. Capitelli, F. Esposito, and A. Gicquel, Chem. Phys. Lett. 340, 322 (2001).

    Article  Google Scholar 

  36. S. Prucker, W. Meier, and W. Stricker, Rev. Sci. Instrum. 65(9), 1996 (1994).

    Article  Google Scholar 

  37. A. V. Bodronosov, K. A. Vereshchagin, V. A. Gorshkov, et al., Kvantovaya Élektron. (Moscow) 21(9), 891 (1994).

    Google Scholar 

  38. K. A. Vereshchagin, W. Slauss, D. N. Kozlov, et al., Kvantovaya Élektron. (Moscow) 24(11), 1049 (1997).

    Google Scholar 

  39. W. Strieker, M. Woyde, R. Luckerath, and V. Bergmann, Ber. Bunsen-Gess. Phys. Chem. 97(12), 1608 (1993).

    Google Scholar 

  40. W. M. Shaub, J. W. Nibler, and A. B. Harvey, J. Chem. Phys. 67(5), 1883 (1977).

    Article  ADS  Google Scholar 

  41. V. V. Smirnov and V. I. Fabelinskiĭ, Pis’ma Zh. Éksp. Teor. Fiz. 28(7), 461 (1978) [JETP Lett. 28 (7), 427 (1978)].

    ADS  Google Scholar 

  42. S. I. Valyanskiĭ, K. A. Vereshchagin, V. I. Vernke, et al., Kvantovaya Élektron. (Moscow) 11(9), 1833 (1984).

    Google Scholar 

  43. B. Massabieaux, G. Gousset, M. Lefebvre, and M. Pealat, J. Physique 48, 1939 (1987).

    Article  Google Scholar 

  44. A. V. Bodronosov, K. A. Vereshchagin, V. A. Gorshkov, et al., Zh. Tekh. Fiz. 64(1), 47 (1994) [Phys. Tech. Phys. 39 (1), 25 (1994)].

    Google Scholar 

  45. O. A. Gordeev and V. A. Shakhatov, Zh. Tekh. Fiz. 65(7), 40 (1995) [Phys. Tech. Phys. 40 (7), 656 (1994)].

    Google Scholar 

  46. V. A. Shakhatov, in Abstracts of the 13th European Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG), Poprad, Slovakia (Poprad, 1996), Vol. 20E, p. 449.

    Google Scholar 

  47. A. V. Bodronosov, K. A. Vereshchagin, and O. A. Gordeev, Teplofiz. Vys. Temp. 34(5), 666 (1996).

    Google Scholar 

  48. K. A. Vereshchagin, V. V. Smirnov, and V. A. Shakhatov, Zh. Tekh. Fiz. 67(7), 34 (1997) [Phys. Tech. Phys. 40 (7), 748 (1994)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shakhatov.

Additional information

Original Russian Text © V.A. Shakhatov, O.A. Gordeev, 2007, published in Optika i Spektroskopiya, 2007, Vol. 103, No. 3, pp. 483–496.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhatov, V.A., Gordeev, O.A. CARS spectroscopy of radio-frequency discharge plasma in hydrogen. Opt. Spectrosc. 103, 468–481 (2007). https://doi.org/10.1134/S0030400X07090160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07090160

PACS numbers

Navigation