Skip to main content
Log in

Casimir-Polder interaction of excited media

  • Nanophotonics, van der Waals Interactions, and Casimir-Polder Forces
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The potential of long-range interaction between two dissimilar atoms, one of which is excited, drops as 1/R 2 with the distance for the Casimir-Polder limit of large distances in comparison with the wave-length of atom transitions (E.A. Power and T. Thirunamachandran, Phys. Rev. A 51, 3660 (1995)). It is shown that such a dependence, obtained with the help of perturbation technique, results in a divergence for the interaction potential between an excited atom and a medium of dilute gas. We develop a nonperturbative method based upon quantum Green’s functions (Yu. Sherkunov, Phys. Rev. A 72, 052703 (2005)) to calculate the interaction potential for an excited atom and a ground-state atom embedded in a dielectric medium, taking into account the absorption of photons in the dielectric medium. The exponential suppression of the interaction between the atoms is demonstrated. The force acting on an excited atom near the interface of dilute gas medium is calculated. The result is no more divergent. The force between gas media in Casimir-Polder regime is calculated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. London, Z. Phys. 63, 245 (1930).

    Article  ADS  Google Scholar 

  2. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

    Article  MATH  ADS  Google Scholar 

  3. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. Ser. B 51, 793 (1948).

    MATH  Google Scholar 

  4. E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

    MathSciNet  Google Scholar 

  5. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Sov. Phys. JETP 10, 161 (1960).

    Google Scholar 

  6. K. Milton, J. Phys. A 37, R209 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. R. R. McLone and E. A. Power, Proc. R. Soc. London, Ser. A 286, 573 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Gomberoff, R. R. McLone, and E. A. Power, J. Chem. Phys. 44, 4148 (1966).

    Article  ADS  Google Scholar 

  9. M. R. Philpott, Proc. R. Soc. London 87, 619 (1966).

    Article  Google Scholar 

  10. G. Kweon and N. M. Lawandy, Phys. Rev. A 47, 4513 (1993).

    Article  ADS  Google Scholar 

  11. E. A. Power and T. Thirunamachandran, Phys. Rev. A 47, 2539 (1993).

    Article  ADS  Google Scholar 

  12. E. A. Power and T. Thirunamachandran, Phys. Rev. A 51, 3660 (1995).

    Article  ADS  Google Scholar 

  13. L. Rizzuto, R. Passante, and F. Persico, Phys. Rev. A 70, 012107 (2004).

    Google Scholar 

  14. Y. Sherkunov, Phys. Rev. A 72, 052703 (2005).

    Google Scholar 

  15. J. Mahanty and B. W. Ninham, J. Phys. A 5, 1447 (1972).

    Article  ADS  Google Scholar 

  16. J. Mahanty and B. W. Ninham, J. Phys. A 6, 1140 (1973).

    Article  ADS  Google Scholar 

  17. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, London, 1976).

    Google Scholar 

  18. S. Y. Buhmann, H. Safari, D.-G. Welsch, and Ho Trung Dung, Preprint quant-ph/0603193.

  19. H. Safari, S. Y. Buhmann, D.-G. Welsch, and Ho Trung Dung, Preprint quant-ph/0606080.

  20. S. Y. Buhmann, H. Safari, Ho Trung Dung, and D.-G. Welsch, Preprint quant-ph/0606232.

  21. Y. Sherkunov, Phys. Rev. A 75, 012705 (2007).

    Google Scholar 

  22. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

    MathSciNet  Google Scholar 

  23. E. M. Lifshitz and L. P. Pitaevski, Physical Kinetics (Pergamon, Oxford, 1981).

    Google Scholar 

  24. B. A. Veklenko, Sov. Phys. JETP 69, 258 (1989).

    Google Scholar 

  25. V. B. Berestetski, E. M. Lifshitz, and L. P. Pitaevski, Quantum Electrodynamics (Pergamon, Oxford, 1982).

    Google Scholar 

  26. E. M. Lifshitz and L. P. Pitaevski, Statistical Physics, Part 2 (Butterworth-Heinenmann, Oxford, 1980).

    Google Scholar 

  27. P. W. Milonni and M.-L. Shih, Phys. Rev. A 45, 4241 (1992).

    Article  ADS  Google Scholar 

  28. B. W. Ninham and J. Daicic, Phys. Rev. A 57, 1870 (1999).

    Article  ADS  Google Scholar 

  29. G. H. Goedecke and C. Roy Wood, Phys. Rev A 60, 2677 (1999).

    Article  ADS  Google Scholar 

  30. H. Wennerstrom, J. Daicic, and B. W. Ninham, Phys. Rev. A 60, 2581 (1999).

    Article  ADS  Google Scholar 

  31. G. Barton, Phys. Rev. A 64, 032102 (2001).

    Google Scholar 

  32. L. Spruch, Phys. Rev. A 66, 022103 (2002).

    Google Scholar 

  33. B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. D 72, 085009 (2005).

    Google Scholar 

  34. M. Bostrom and B. W. Ninham, Phys. Rev. A 69, 054701 (2004).

    Google Scholar 

  35. R. Passante, F. Persico, and L. Rizzuto, J. Mod. Opt 52, 1957 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Sherkunov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherkunov, Y. Casimir-Polder interaction of excited media. Opt. Spectrosc. 103, 388–397 (2007). https://doi.org/10.1134/S0030400X0709007X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X0709007X

PACS numbers

Navigation