Skip to main content
Log in

The effect of resonance interactions on the absorption spectra of (SF6)2 dimers in low-temperature matrices: Calculations and experiment

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The IR absorption spectra of (SF6)2 dimers in Ar and N2 matrices are investigated at 11 K. As a result of the resonance dipole-dipole interaction, the band of the triply degenerate vibration v 3 is split into two components v X, Y and v Z. In comparison with the gaseous state, the splitting Δv = v X, Yv Z in the argon matrix decreases to 18.45 cm−1, whereas, in the nitrogen matrix, the band v X, Y is split into components v X and v Y, with the splitting being equal to δ ≈ 0.9 cm−1. A model that takes into account the influence of the matrix on the spectra of dimers is developed. The model makes it possible to successively (i) calculate the resonance spectrum of an isolated dimer in terms of the model of local modes taking into account resonance interactions, (ii) determine with the help of the Monte Carlo method the structure of a matrix consisting of 512–1440 Ar (or N2) atoms and a rigid (SF6)2 dimer, and (iii) take into account interactions of local dipole moments of a dimer with particles of the matrix in the approximation of dipole-induced dipole interactions. The model developed satisfactorily describes the experimental results. The calculated frequencies v Z, v X, and v Y of a dimer in the matrix are shifted toward smaller frequencies as compared to the gaseous state, while the resonance splitting decreases virtually by 2 cm−1. It is shown that, in an argon matrix with a symmetric arrangement of argon atoms nearest to a dimer, the splitting of v X, Y proves to be smaller than 0.05 cm−1. In a nitrogen matrix, this splitting increases virtually to 0.4 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. E. Gough, D. G. Knight, and G. Scoles, Chem. Phys. Lett. 97(2), 155 (1983).

    Article  ADS  Google Scholar 

  2. T. E. Gought, M. Mengel, P. A. Rowntree, and G. Scoles, J. Chem. Phys. 83(2), 4958 (1985).

    Article  ADS  Google Scholar 

  3. M. Snels and J. Reuss, Chem. Phys. KLett 140(2), 543 (1987).

    Article  ADS  Google Scholar 

  4. D. J. Levander, S. Goyal, J. McComble, et al., J. Chem. Soc. Faraday. Trans. 86(13), 2361 (1990).

    Article  Google Scholar 

  5. X. J. Gu, D. J. Levander, B. Zhang, et al., J. Chem. Phys. 93(7), 4898 (1990).

    Article  ADS  Google Scholar 

  6. T. D. Kolomiitsova, A. P. Burtsev, O. G. Peganov, and D. N. Shechepkin, Chem. Phys. 238, 315 (1998).

    Article  Google Scholar 

  7. T. D. Kolomiĭtsova, A. R. Burtsev, V. G. Fedoseev, and D. N. Shchepkin, Opt. Spektrosk. 84(3), 439 (1998) [Opt. Spectrosc. 84 (3), 381 (1998)].

    Google Scholar 

  8. E. Knozinger, E. Babka, and D. Hallamasek, J. Phys. Chem. A 105(35), 8176 (2001).

    Article  Google Scholar 

  9. H. Katsuki, T. Momose, and T. Shida, J. Chem. Phys. 116(19), 8411 (2002).

    Article  ADS  Google Scholar 

  10. D. S. Andrianov, A. S. Blagoveshchenskiĭ, T. D. Kolomiĭtsova, and D. N. Shchepkin, Opt. Spektrosk. 94(4), 564 (2003) [Opt. Spectrosc. 94 (4), 513 (2003)].

    Article  Google Scholar 

  11. R.-D. Urban and M. Takami, J. Chem. Phys. 102(8), 3017 (1995).

    Article  ADS  Google Scholar 

  12. R.-D. Urban and M. Takami, J. Chem. Phys. 103(21), 9132 (1995).

    Article  ADS  Google Scholar 

  13. T. D. Kolomiitsova, Z. Mielke, D. N. Shchepkin, and K. G. Tokhadze, Chem. Phys. Lett. 357, 181 (2002).

    Article  Google Scholar 

  14. S. K. Ignatov, Chem. Phys. 324, 753 (2006).

    Article  Google Scholar 

  15. N. E. Holden, R. L. Martin, and I. L. Barnes, Pure Appl. Chem. 56, 675 (1984).

    Google Scholar 

  16. Z. Mielke, K. G. Tokhadze, Z. Latajka, and E. Ratajczak, J. Phys. Chem. 100, 539 (1996).

    Article  Google Scholar 

  17. B. I. Swanson and L. H. Jones, J. Chem. Phys. 73(2), 986 (1980).

    Article  ADS  Google Scholar 

  18. L. H. Jones and B. I. Swanson, J. Chem. Phys. 79(2), 1516 (1983).

    Article  ADS  Google Scholar 

  19. K. Fox and W. Person, J. Chem. Phys. 64, 5218 (1976).

    Article  ADS  Google Scholar 

  20. T. D. Kolomiĭtsova, S. M. Melikova, and G. P. Miroshnichenko, Opt. Spektrosk. 59(6), 1226 (1985) [Opt. Spectrosc. 59 (6), 735 (1985)].

    Google Scholar 

  21. T. A. Beu and K. Takeuchi, J. Chem. Phys. 103(2), 6394 (1995).

    Article  ADS  Google Scholar 

  22. T. D. Kolomiĭtsova, V. A. Kondaurov, E. V. Sedelkova, and D. N. Shchepkin, Opt. Spektrosk. 92(4), 564 (2002) [Opt. Spectrosc. 92 (4), 512 (2002)].

    Google Scholar 

  23. N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., J. Chem. Phys. 21(6), 1087 (1953).

    Article  Google Scholar 

  24. C. A. Croxton, Liquid State Physics (Cambridge Univ. Press, Cambridge, 1974; Mir, Moscow, 1978).

    Google Scholar 

  25. Physicotechnical Fundamentals of Cryogenics: A Handbook, Ed. by M. P. Malkov (Énergiya, Moscow, 1973) [in Russian].

    Google Scholar 

  26. M. A. Spackman, J. Chem. Phys. 85(11), 6579 (1986).

    Article  ADS  Google Scholar 

  27. J. M. Parson, P. E. Siska, and Y. T. Lee, J. Chem. Phys. 56(4), 1511 (1972).

    Article  Google Scholar 

  28. I. G. Kaplan, Theory of Molecular Interactions (Nauka, Moscow, 1982; Elsevier, New York, 1986).

    Google Scholar 

  29. T.-S. Kuan, A. Warshel, and O. Schnepp, J. Chem. Phys. 52(6), 3012 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.K. Tokhadze, T.D. Kolomiĭtsova, K.G. Tokhadze, D.N. Shchepkin, 2007, published in Optika i Spektroskopiya, 2007, Vol. 102, No. 3, pp. 442–453.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokhadze, I.K., Kolomiĭtsova, T.D., Tokhadze, K.G. et al. The effect of resonance interactions on the absorption spectra of (SF6)2 dimers in low-temperature matrices: Calculations and experiment. Opt. Spectrosc. 102, 396–407 (2007). https://doi.org/10.1134/S0030400X07030137

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X07030137

PACS numbers

Navigation