Skip to main content
Log in

Silencing of the S-Phase Kinase-Associated Protein 2 Gene (SKP2) Inhibits Proliferation and Migration of Hepatocellular Carcinoma Cells

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

SKP2 gene is an independent prognostic factor in some diseases and a potential oncogene. The molecular mechanism underlying the occurrence and development of hepatoma, and the involvement of the SKP2 in this process remain unclear. Here, in order to study the effect of SKP2 on proliferation, apoptosis and migration of hepatoma cells, we utilized lentivirus-mediated RNA interference technology using short hairpin RNAs (shRNAs) specific for SKP2. It was demonstrated that SKP2 expression was significantly upregulated in 809 hepatocarcinoma tissues compared to 379 normal liver tissues. The survival time of patients with high levels of SKP2 mRNA was shorter than those with low levels, and SKP2 expression was maximal in stage III hepatocellular carcinoma tissues. The effects of SKP2 silencing on proliferation, apoptosis, cell cycle, migration, and the expression of apoptosis proteins in Huh7 and HepG2 cells were evaluated by MTT assay, flow cytometry, colony formation assay, Transwell, and Western blot analysis. SKP2 expression was significantly reduced in stably transfected Huh7 and HepG2 cells, with knockout efficiencies of 95.7 and 85.8%, respectively. The viability, proliferation, and migration of transfected cancer cells were reduced. In these cells, the apoptosis rate was increased, and the cell cycle was arrested in the G2/M phase. The expression of the apoptosis-associated BCL-2/BAX proteins was decreased, while p53 was upregulated. Thus, we have shown that inhibiting the expression of SKP2 can significantly impede cancer cell proliferation and migration, halt the cell cycle, and induce apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

DATA AVAILABILITY

All data supporting the findings of this study are available within the paper.

REFERENCES

  1. Wang C.I., Chu P.M., Chen Y.L., Lin Y.H., Chen C.Y. 2021. Chemotherapeutic drug-regulated cytokines might influence therapeutic efficacy in HCC. Int. J. Mol. Sci. 22 (24), 13627. https://doi.org/10.3390/ijms222413627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu D., Wang Y., Shen X., Mao T., Liang X., Wang T., Shen W., Zhuang Y., Ding J. 2023. Genetic landscape and clinical significance of cuproptosis-related genes in liver hepatocellular carcinoma. Genes Dis. 11 (2), 516‒519. https://doi.org/10.1016/j.gendis.2023.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faivre S., Bouattour M., Raymond E. 2011. Novel molecular therapies in hepatocellular carcinoma. Liver Int. 1, 151‒160. https://doi.org/10.1111/j.1478-3231.2010.02395.x

    Article  Google Scholar 

  4. Myojin Y., Hikita H., Sugiyama M., Sasaki Y., Fukumoto K., Sakane S., Makino Y., Takemura N., Yamada R., Shigekawa M., Kodama T., Sakamori R., Kobayashi S., Tatsumi T., Suemizu H., Eguchi H., Kokudo N., Mizokami M., Takehara T. 2021. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology. 160 (5), 1741‒1754.e1716. https://doi.org/10.1053/j.gastro.2020.12.015

  5. Peng J.M., Tseng R.H., Shih T.C., Hsieh S.Y. 2021. CAMK2N1 suppresses hepatoma growth through inhibiting E2F1-mediated cell-cycle signaling. Cancer Lett. 497, 66‒76. https://doi.org/10.1016/j.canlet.2020.10.017

    Article  CAS  PubMed  Google Scholar 

  6. Wang J., Xiang Y., Fan M., Fang S., Hua Q. 2023. The ubiquitin-proteasome system in tumor metabolism. Cancers. 15 (8), 599‒621. https://doi.org/10.3390/cancers15082385

    Article  CAS  Google Scholar 

  7. Asmamaw M.D., Liu Y., Zheng Y.C., Shi X.J., Liu H.M. 2020. Skp2 in the ubiquitin-proteasome system: a comprehensive review. Med. Res. Rev. 40 (5), 1920‒1949. https://doi.org/10.1002/med.21675

    Article  CAS  PubMed  Google Scholar 

  8. Cui H., Arnst K., Miller D.D., Li W. 2020. Recent advances in elucidating paclitaxel resistance mechanisms in non-small cell lung cancer and strategies to overcome drug resistance. Curr. Med. Chem. 27 (39), 6573‒6595. https://doi.org/10.2174/0929867326666191016113631

  9. Hu X., Meng Y., Xu L., Qiu L., Wei M., Su D., Qi X., Wang Z., Yang S., Liu C., Han J. 2019. Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3. Cell Death Dis. 10 (2), 104. https://doi.org/10.1038/s41419-018-1200-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tekcham D.S., Chen D., Liu Y., Ling T., Zhang Y., Chen H., Wang W., Otkur W., Qi H., Xia T., Liu X., Piao H.L., Liu H. 2020. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Theranostics. 10 (9), 4150‒4167. https://doi.org/10.7150/thno.42735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng N., Wang Z., Wei W. 2016. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int. J. Biochem. Cell Biol. 73, 99‒110. https://doi.org/10.1016/j.biocel.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu J., Su H.K., Yu Z.H., Xi S.Y., Guo C.C., Hu Z.Y., Qu Y., Cai H.P., Zhao Y.Y., Zhao H.F., Chen F.R., Huang Y.F., To S.T., Feng B.H., Sai K., Chen Z.P., Wang J. 2020. Skp2 modulates proliferation, senescence and tumorigenesis of glioma. Cancer Cell Int. 20, 71. https://doi.org/10.1186/s12935-020-1144-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen X., Huang Z., Wu W., Xia R. 2020. Inhibition of Skp2 sensitizes chronic myeloid leukemia cells to imatinib. Cancer Manage. Res. 12, 4777‒4787. https://doi.org/10.2147/CMAR.S253367

    Article  CAS  Google Scholar 

  14. Asmamaw M.D., Zhang L.R., Liu H.M., Shi X.J., Liu Y. 2023. Skp2 is a novel regulator of LSD1 expression and function in gastric cancer. Genes Dis. 10 (6), 2267‒2269. https://doi.org/10.1016/j.gendis.2023.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin H., Ruan G.Y., Sun X.Q., Chen X.Y., Zheng X., Sun P.M. 2019. Effects of RNAi-induced Skp2 inhibition on cell cycle, apoptosis and proliferation of endometrial carcinoma cells. Exp. Ther. Med. 17 (5), 3441‒3450. https://doi.org/10.3892/etm.2019.7392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J., Zheng X., Li W., Ren L., Li S., Yang Y., Yang H., Ge B., Du G., Shi J., Wang J. 2022. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1 phase and inducing senescence. Pharmacol. Res. 181, 106259. https://doi.org/10.1016/j.phrs.2022.106259

    Article  CAS  PubMed  Google Scholar 

  17. Wu T., Gu X., Cui H. 2021. Emerging roles of Skp2 in cancer drug resistance. Cells. 10 (5), 1147. https://doi.org/10.3390/cells10051147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamada S., Yanamoto S., Naruse T., Matsushita Y., Takahashi H., Umeda M., Nemoto T.K., Kurita H. 2016. Skp2 regulates the expression of MMP-2 and MMP-9, and enhances the invasion potential of oral squamous cell carcinoma. Pathol. Oncol. Res. 22 (3), 625‒632. https://doi.org/10.1007/s12253-016-0049-6

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M., Zhang L., Hei R., Li X., Cai H., Wu X., Zheng Q., Cai C. 2021. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11 (5), 1913‒1935.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu Z., Hunter T. 2010. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle. 9 (12), 2342‒2352. https://doi.org/10.4161/cc.9.12.11988

    Article  CAS  PubMed  Google Scholar 

  21. Amani J., Gorjizadeh N., Younesi S., Najafi M., Ashrafi A.M., Irian S., Gorjizadeh N., Azizian K. 2021. Cyclin-dependent kinase inhibitors (CDKIs) and the DNA damage response: The link between signaling pathways and cancer. DNA Repair. 102, 103103. https://doi.org/10.1016/j.dnarep.2021.103103

    Article  CAS  PubMed  Google Scholar 

  22. Feng T., Wang P., Zhang X. 2024. Skp2: a critical molecule for ubiquitination and its role in cancer. Life Sci. 338, 122409. https://doi.org/10.1016/j.lfs.2023.122409

    Article  CAS  PubMed  Google Scholar 

  23. Wei Z., Jiang X., Liu F., Qiao H., Zhou B., Zhai B., Zhang L., Zhang X., Han L., Jiang H., Kris-sansen G.W., Sun X. 2013. Downregulation of Skp2 inhibits the growth and metastasis of gastric cancer cells in vitro and in vivo. Tumour Biol. 34 (1), 181‒192. https://doi.org/10.1007/s13277-012-0527-8

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh R., Kaypee S., Shasmal M., Kundu T.K., Roy S., Sengupta J. 2019. Tumor suppressor p53-mediated structural reorganization of the transcriptional coactivator p300. Biochemistry. 58 (32), 3434‒3443. https://doi.org/10.1021/acs.biochem.9b00333

    Article  CAS  PubMed  Google Scholar 

  25. Kitagawa M., Lee S.H., McCormick F. 2008. Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol. Cell. 29 (2), 217‒231. https://doi.org/10.1016/j.molcel.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  26. Davidovich S., Ben-Izhak O., Shapira M., Futerman B., Hershko D.D. 2008. Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res. 10 (4), R63. https://doi.org/10.1186/bcr2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neudorf N.M., Thompson L.L., Lichtensztejn Z., Razi T., McManus K.J. 2022. Reduced Skp2 expression adversely impacts genome stability and promotes cellular transformation in colonic epithelial cells. Cells. 11 (23), 3731. https://doi.org/10.3390/cells11233731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sumimoto H., Hirata K., Yamagata S., Miyoshi H., Miyagishi M., Taira K., Kawakami Y. 2006. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int. J. Cancer. 118 (2), 472‒476. https://doi.org/10.1002/ijc.21286

    Article  CAS  PubMed  Google Scholar 

  29. Kudo Y., Kitajima S., Ogawa I., Kitagawa M., Miyauchi M., Takata T. 2005. Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation. Mol. Cancer Ther. 4 (3), 471‒476. https://doi.org/10.1158/1535-7163.MCT-04-0232

    Article  CAS  PubMed  Google Scholar 

  30. Jiang F., Caraway N.P., Li R., Katz R.L. 2005. RNA silencing of S-phase kinase-interacting protein 2 inhibits proliferation and centrosome amplification in lung cancer cells. Oncogene. 24 (21), 3409‒3418. https://doi.org/10.1038/sj.onc.1208459

    Article  CAS  PubMed  Google Scholar 

  31. Lee S.H., McCormick F. 2005. Downregulation of Skp2 and p27/Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J. Mol. Med. 83 (4), 296‒307. https://doi.org/10.1007/s00109-004-0611-7

    Article  CAS  PubMed  Google Scholar 

  32. Marchio C., Balmativola D., Castiglione R., Annaratone L., Sapino A. 2017. Predictive diagnostic pathology in the target therapy era in breast cancer. Curr. Drug Targets. 18 (1), 4‒12. https://doi.org/10.2174/1389450116666150203121218

    Article  CAS  PubMed  Google Scholar 

  33. Elahi A.H., Morales C.S., Xu X.L., Eliades A., Patsalis P.C., Abramson D.H., Jhanwar S.C. 2023. Targeted pharmacologic inhibition of S-phase kinase-associated protein 2 (SKP2) mediated cell cycle regulation in lung and other RB-Related cancers: A brief review of current status and future prospects. Adv. Biol. Regul. 88, 100964. https://doi.org/10.1016/j.jbior.2023.100964

    Article  CAS  PubMed  Google Scholar 

  34. Dan W.R., Zhong L., Zhang Z., Wan P., Lu Y., Wang X., Liu Z., Chu X., Liu B. 2022. RIP1-dependent apoptosis and differentiation regulated by Skp2 and Akt/GSK3β in acute myeloid leukemia. Int. J. Med. Sci. 19 (3), 525‒536. https://doi.org/10.7150/ijms.68385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Siefert J.C., Clowdus E.A., Sansam C.L. 2015. Cell cycle control in the early embryonic development of aquatic animal species. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178, 8‒15. https://doi.org/10.1016/j.cbpc.2015.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hume S., Dianov G.L., Ramadan K. 2020. A unified model for the G1/S cell cycle transition. Nucleic Acids Res. 48 (22), 12483‒12501. https://doi.org/10.1093/nar/gkaa1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hume S., Grou C.P., Lascaux P., D’Angiolella V., Legrand A.J., Ramadan K., Dianov G.L. 2021. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat. Commun. 12 (1), 6959. https://doi.org/10.1038/s41467-021-27124-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong L., Georgia S., Tschen S.I., Nakayama K., Nakayama K., Nakayama K., Bhushan A. 2007. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic beta cells. J. Clin. Invest. 117 (10), 2869‒2876. https://doi.org/10.1172/jci32198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y., Jing C., Tang X., Chen Y., Han X., Zhu Y. 2016. LXR activation causes G1/S arrest through inhibiting SKP2 expression in MIN6 pancreatic beta cells. Endocrine. 53 (3), 689‒700. https://doi.org/10.1007/s12020-016-0915-8

    Article  CAS  PubMed  Google Scholar 

  40. Xu S.Y., Wang F., Wei G., Wang B., Yang J.Y., Huang Y.Z., Zhang L., Zheng F., Guo L.Y., Wang J.N., Tang J.M. 2013. S-phase kinase-associated protein 2 knockdown blocks colorectal cancer growth via regulation of both p27 and p16 expression. Cancer Gene Ther. 20 (12), 690‒694. https://doi.org/10.1038/cgt.2013.70

    Article  CAS  PubMed  Google Scholar 

  41. Qi M., Liu D., Zhang S., Hu P., Sang T. 2015. Inhibition of S-phase kinase-associated protein 2-mediated p27 degradation suppresses tumorigenesis and the progression of hepatocellular carcinoma. Mol. Med. Rep. 11 (5), 3934‒3940. https://doi.org/10.3892/mmr.2015.3156

    Article  CAS  PubMed  Google Scholar 

  42. Zeng M., Zhang X., Xing W., Wang Q., Liang G., He Z. 2022. Cigarette smoke extract mediates cell premature senescence in chronic obstructive pulmonary disease patients by up-regulating USP7 to activate p300-p53/p21 pathway. Toxicol. Lett. 359, 31‒45. https://doi.org/10.1016/j.toxlet.2022.01.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Hubei Provincial Department of Education Science and Technology Research Key Project (D20191301).

Author information

Authors and Affiliations

Authors

Contributions

Yaying Zhao: data curation, formal analysis, investigation, methodology, resources, writing—original draft. Zixi Gao: data curation, investigation, methodology, resources, writing—original draft. Shudong Wei: data curation, investigation, formal analysis, project administration, methodology, resources, supervision. Wei Song: conceptualization, project administration, methodology, resources, supervision, and validation.

Corresponding authors

Correspondence to S. D. Wei or W. Song.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y.Y., Gao, Z.X., Wei, S.D. et al. Silencing of the S-Phase Kinase-Associated Protein 2 Gene (SKP2) Inhibits Proliferation and Migration of Hepatocellular Carcinoma Cells. Mol Biol (2024). https://doi.org/10.1134/S0026893324700651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0026893324700651

Keywords:

Navigation