Skip to main content
Log in

Virus-Like Particles Carrying HIV-1 Env with a Modulated Glycan Composition

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of the ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). For VLP production, rVVs expressing Env, Gag-Pol (HIV-1/SIV), and the cowpox virus hr gene, which overcomes the restriction of vaccinia virus replication in CHO cells, were used. The CHO Lec1 engineered cell line lacking GlcNAc-TI was used for generating VLPs with Env proteins containing a cytoplasmic (CT) domain affecting the surface subunit (SU) conformation. This has created the opportunity to modulate the glycan composition, and refine the conditions for their production, and optimize approaches to overcoming HIV-1 resistance associated with abundant glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Melikyan G.B., Markosyan R.M., Hemmati H., Delmedico M.K., Lambert D.M., Cohen F.S. 2000. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol. 151, 413–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rutten L., Lai Y.T., Blokland S., Truan D., Bisschop I.J.M., Strokappe N.M., Koornneef A., van Manen D., Chuang G.Y., Farney S.K., Schuitemaker H., Kwong P.D., Langedijk J.P.M. 2018. A universal approach to optimize the folding and stability of prefusion-closed HIV-1 envelope trimers. Cell Rep. 23, 584‒595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vzorov A.N., Wang L., Wang B.Z., Compans R.W. 2016. Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Vir-ology. 489, 141‒150.

    CAS  Google Scholar 

  4. Vzorov A.N., Compans R.W. 1996. Assembly and release of SIV env proteins with full-length or truncated cytoplasmic domains. Virology. 221, 22‒33.

    Article  CAS  PubMed  Google Scholar 

  5. Vzorov A.N., Lea-Fox D., Compans R.W. 1999. Immunogenicity of full length and truncated SIV envelope proteins. Viral Immunol. 12, 205‒215.

    Article  CAS  PubMed  Google Scholar 

  6. Vzorov A.N., Compans R.W. 2000. Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. J. V-irol. 74, 8219‒8225.

    CAS  Google Scholar 

  7. Vzorov A.N., Compans R.W. 2011. Effects of stabilization of the gp41 cytoplasmic domain on fusion activity and infectivity of SIVmac239. AIDS Res. Hum. Retroviruses. 27, 1213‒1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haynes B.F., Wiehe K., Borrow P., Saunders K.O., Korber B., Wagh K., McMichael A.J., Kelsoe G., Hahn B.H., Alt F., Shaw G.M. 2023. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23, 142‒158.

    Article  CAS  PubMed  Google Scholar 

  9. Back N.K., Smit L., De Jong J.J., Keulen W., Schutten M., Goudsmit J., Tersmette M. 1994. An N‑glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Vir-ology. 199, 431‒438.

    CAS  Google Scholar 

  10. Cole K.S., Steckbeck J.D., Rowles J.L., Desrosiers R.C., Montelaro R.C. 2004. Removal of N-linked glycosylation sites in the V1 region of simian immunodeficiency virus gp120 results in redirection of B-cell responses to V3. J. Virol. 78, 1525‒1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koch M., Pancera M., Kwong P.D., Kolchinsky P., Grundner C., Wang L., Hendrickson W.A., Sodroski J., Wyatt R. 2003. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition. Virology. 313, 387‒400.

    Article  CAS  PubMed  Google Scholar 

  12. McCaffrey R.A., Saunders C., Hensel M., Stamatatos L. 2004. N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. J. Virol. 78, 3279‒3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reitter J.N., Means R.E., Desrosiers R.C. 1998. A role for carbohydrates in immune evasion in AIDS. Nat. Med. 4, 679‒684.

    Article  CAS  PubMed  Google Scholar 

  14. Julien J.P., Lee P.S., Wilson I.A. 2012. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol. Rev. 250, 180‒198.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sok D., Doores K.J., Briney B., Le K.M., Saye-Francisco K.L., Ramos A., Kulp D.W., Julien J.P., Menis S., Wickramasinghe L., Seaman M.S., Schief W.R., Wilson I.A., Poignard P., Burton D.R. 2014. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 6, 236ra63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lanteri M., Giordanengo V., Hiraoka N., Fuzibet J.G., Auberger P., Fukuda M., Baum L.G., Lefebvre J.C. 2003. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology. 13, 909‒918.

    Article  CAS  PubMed  Google Scholar 

  17. Binley J.M., Ban Y.E., Crooks E.T., Eggink D., Osawa K., Schief W.R., Sanders R.W. 2010. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J. Virol. 84, 5637‒5655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagh K., Hahn B.H., Korber B. 2020. Hitting the sweet spot: Exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Curr. Opin. HIV AIDS. 15, 267‒274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lechner F., Jegerlehner A., Tissot A.C., Maurer P., Sebbel P., Renner W.A., Jennings G.T., Bachmann M.F. 2002. Virus-like particles as a modular system for novel vaccines. Intervirology. 45, 212‒217.

    Article  PubMed  Google Scholar 

  20. Blasco R., Moss B. 1995. Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene. 158, 157‒162.

    Article  CAS  PubMed  Google Scholar 

  21. Moore P.L., Crooks E.T., Porter L., Zhu P., Cayanan C.S., Grise H., Corcoran P., Zwick M.B., Franti M., Morris L., Roux K.H., Burton D.R., Binley J.M. 2006. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 80, 2515‒2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramsey-Ewing A., Moss B. 1996. Recombinant protein synthesis in Chinese hamster ovary cells using a vaccinia virus/bacteriophage T7 hybrid expression system. J. Biol. Chem. 271, 16962‒16966.

    Article  CAS  PubMed  Google Scholar 

  23. Checkley M.A., Luttge B.G., Freed E.O. 2011. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582‒608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vzorov A.N., Yang C., Compans R.W. 2015. An amphipathic sequence in the cytoplasmic tail of HIV-1 Env alters cell tropism and modulates viral receptor specificity. Acta Virol. 59, 209‒220.

    Article  CAS  PubMed  Google Scholar 

  25. Tedbury P.R., Novikova M., Ablan S.D., Freed E.O. 2016. Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. Proc. Natl. Acad. Sci. U. S. A. 113 (2), E182-90. https://doi.org/10.1073/pnas.1516618113

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen N.T.B., Lin J., Tay S.J., Mariati, Yeo M., Nguyen-Khuong T., Yang Y. 2021. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci. Rep. 11, 12969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Derdeyn C.A., Decker J.M., Bibollet-Ruche F., Mokili J.L., Muldoon M., Denham S.A., Heil M.L., Kasolo F., Musonda R., Hahn B.H., Shaw G.M., Korber B.T., Allen S., Hunter E. 2004. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science. 303, 2019‒2022.

    Article  CAS  PubMed  Google Scholar 

  28. Patnaik S.K., Stanley P. 2006. Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416, 159‒182.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu X., Borchers C., Bienstock R.J., Tomer K.B. 2000. Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry. 39, 11194‒11204.

    Article  CAS  PubMed  Google Scholar 

  30. Raska M., Takahashi K., Czernekova L., Zachova K., Hall S., Moldoveanu Z., Elliott M.C., Wilson L., Brown R., Jancova D., Barnes S., Vrbkova J., Tomana M., Smith P.D., Mestecky J., Renfrow M.B., Novak J. 2010. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J. Biol. Chem. 285, 20860‒20869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srinivas R.V., Compans R.W. 1983. Glycosylation and intracellular transport of spleen focus-forming virus glycoproteins. Virology. 125, 274‒286.

    Article  CAS  PubMed  Google Scholar 

  32. Cao L., Pauthner M., Andrabi R., Rantalainen K., Berndsen Z., Diedrich J.K., Menis S., Sok D., Bastidas R., Park S.R., Delahunty C.M., He L., Guenaga J., Wyatt R.T., Schief W.R., Ward A.B., Yates J.R. 3rd., Burton D.R., Paulson J.C. 2018. Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat. Commun. 9, 3693.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kwong P.D., Wyatt R., Robinson J., Sweet R.W., Sodroski J., Hendrickson W.A. 1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 393, 648‒659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rizzuto C.D., Wyatt R., Hernández-Ramos N., Sun Y., Kwong P.D., Hendrickson W.A., Sodroski J. 1998. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science. 280, 1949‒1953.

    Article  CAS  PubMed  Google Scholar 

  35. Kolchinsky P., Kiprilov E., Sodroski J. 2001. Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J. Virol. 75, 2041‒2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Puffer B.A., Pöhlmann S., Edinger A.L, Carlin D., Sanchez M.D., Reitter J., Watry D.D., Fox H.S., Desrosiers R.C., Doms R.W. 2002. CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J. Virol. 76, 2595‒2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edwards T.G., Hoffman T.L., Baribaud F., Wyss S., LaBranche C.C., Romano J., Adkinson J., Sharron M., Hoxie J.A., Doms R.W. 2001. Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J. Virol. 75, 5230‒5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnson W.E., Morgan J., Reitter J., Puffer B.A., Czajak S., Doms R.W., Desrosiers R.C. 2002. A replication-competent, neutralization-sensitive variant of simian immunodeficiency virus lacking 100 amino acids of envelope. J. Virol. 76, 2075‒2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Center R.J., Earl P.L., Lebowitz J., Schuck P., Moss B. 2000. The human immunodeficiency virus type 1 gp120 V2 domain mediates gp41-independent intersubunit contacts. J. Virol. 74, 4448‒4455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vzorov A.N., Compans R.W. 2016. Cytoplasmic domain effects on exposure of co-receptor-binding sites of HIV-1 Env. Arch. Virol. 161, 3011‒3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liao H.X., Tsao C.Y., Alam S.M., Muldoon M., Vandergrift N., Ma B.J., Lu X., Sutherland L.L., Scearce R.M., Bowman C., Parks R., Chen H., Blinn J.H., Lapedes A., Watson S., Xia S.M., Foulger A., Hahn B.H., Shaw G.M., Swanstrom R., Montefiori D.C., Gao F., Haynes B.F., Korber B. 2013. Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic envelope glycoproteins of human immunodeficiency virus type 1. J. Virol. 87, 4185‒4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. M.I. Bukrinskii for useful discussions during the writing of this article.

Funding

This work was supported by a State Assignment of the Ministry of Education and Science, Reg. no. 122111700079-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vzorov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaevitser, G.A., Samokhvalov, E.I., Scheblyakov, D.V. et al. Virus-Like Particles Carrying HIV-1 Env with a Modulated Glycan Composition. Mol Biol 58, 763–772 (2024). https://doi.org/10.1134/S0026893324700341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324700341

Keywords:

Navigation