Skip to main content

Advertisement

Log in

Transcription Factor NRF2 in Endothelial Functions

  • THE ROLE OF REDOX-DEPENDENT PROTEINS IN THE IMPLEMENTATION OF REDOX-REGULATION OF CELLS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The transcription factor NRF2 is a major regulator of cell antioxidant defense. NRF2 is activated by various stimuli, such as oxidants and electrophiles, to induce transcription of a number of genes whose products are involved in xenobiotic metabolism and contribute to the reduction of oxidative stress. NRF2 is one of the key transcription factors that ensure the endothelial cell function. The endothelium is a cell layer that lines the lumens of blood vessels and performs various homeostatic functions, controlling migration of leukocytes, regulating thrombosis and vascular tone, and playing a role in angiogenesis. Endothelial dysfunction is often accompanied by inflammation and oxidative stress, which may lead to cell aging and cell death by apoptosis, necrosis, or ferroptosis. Endothelial dysfunction contributes to the development of diabetes and common cardiovascular disorders, such as hypertension and atherosclerosis. Many pathophysiological processes in the endothelium, including senile changes, are associated with decreased NRF2 activity, leading to inflammatory activation and decreasing activity of the cell antioxidant defense systems. Activation of the NRF2 signaling pathway generally contributes to the resolution of inflammation and oxidative stress. The review focuses on the role that NRF2 plays in basic functions of the endothelium in normal and pathological conditions. Advantages and disadvantages of NRF2 activation as a way to prevent and treat cardiovascular diseases are discussed additionally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Widmer R.J., Lerman A. 2014. Endothelial dysfunction and cardiovascular disease. Glob. Cardiol. Sci. Pract. 2014 (3), 291–308. https://doi.org/10.5339/gcsp.2014.43

  2. Kaspar J.W., Niture S.K., Jaiswal A.K. 2009. Nrf2:IN-rf2 (Keap1) signaling in oxidative stress. Free Radical Biol. Med. 47 (9), 1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035

    Article  CAS  Google Scholar 

  3. Motohashi H., Katsuoka F., Engel J.D., Yamamoto M. 2004. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. U. S. A. 101 (17), 6379–6384. https://doi.org/10.1073/pnas.0305902101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nioi P., Nguyen T., Sherratt P.J., Pickett C.B. 2005. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell Biol. 25 (24), 10895–10906. https://doi.org/10.1128/MCB.25.24.10895-10906.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katoh Y., Itoh K., Yoshida E., Miyagishi M., Fukamizu A., Yamamoto M. 2001. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 6 (10), 857–868. https://doi.org/10.1046/j.1365-2443.2001.00469.x

    Article  CAS  PubMed  Google Scholar 

  6. Tong K.I., Katoh Y., Kusunoki H., Itoh K., Tanaka T., Yamamoto M. 2006. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26 (8), 2887–2900. https://doi.org/10.1128/MCB.26.8.2887-2900.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McMahon M., Thomas N., Itoh K., Yamamoto M., Hayes J.D. 2004. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279 (30), 31556–31567. https://doi.org/10.1074/jbc.M403061200

    Article  CAS  PubMed  Google Scholar 

  8. Rada P., Rojo A.I., Chowdhry S., McMahon M., Hayes J.D., Cuadrado A. 2011. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell Biol. 31 (6), 1121–1133. https://doi.org/10.1128/MCB.01204-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang H., Liu K., Geng M., Gao P., Wu X., Hai Y., Li Y., Li Y., Luo L., Hayes J.D., Wang X.J., Tang X. 2013. RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 73 (10), 3097–3108. https://doi.org/10.1158/0008-5472.CAN-12-3386

    Article  CAS  PubMed  Google Scholar 

  10. Iso T., Suzuki T., Baird L., Yamamoto M. 2016. Absolute amounts and status of the Nrf2-Keap1-Cul3 complex within cells. Mol. Cell. Biol. 36 (24), 3100–3112. https://doi.org/10.1128/MCB.00389-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi A., Kang M.-I., Okawa H., Ohtsuji M., Zenke Y., Chiba T., Igarashi K., Yamamoto M. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24 (16), 7130–7139. https://doi.org/10.1128/MCB.24.16.7130-7139.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang D.D., Lo S.-C., Cross J.V., Templeton D.J., Hannink M. 2004. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24 (24), 10941–10953. https://doi.org/10.1128/MCB.24.24.10941-10953.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dinkova-Kostova A.T., Holtzclaw W.D., Cole R.N., Itoh K., Wakabayashi N., Katoh Y., Yamamoto M., Talalay P. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. U. S. A. 99 (18), 11908–11913. https://doi.org/10.1073/pnas.172398899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi M., Li L., Iwamoto N., Nakajima-Takagi Y., Kaneko H., Nakayama Y., Eguchi M., Wada Y., Kumagai Y., Yamamoto M. 2009. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29 (2), 493–502. https://doi.org/10.1128/MCB.01080-08

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki T., Takahashi J., Yamamoto M. 2023. Molecular basis of the KEAP1-NRF2 signaling pathway. Mol. Cells. 46 (3), 133–141. https://doi.org/10.14348/molcells.2023.0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang M.-I., Kobayashi A., Wakabayashi N., Kim S.-G., Yamamoto M. 2004. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Natl. Acad. Sci. U. S. A. 101 (7), 2046–2051. https://doi.org/10.1073/pnas.0308347100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McMahon M., Thomas N., Itoh K., Yamamoto M., Hayes J.D. 2006. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: A two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281 (34), 24756–24768. https://doi.org/10.1074/jbc.M601119200

    Article  CAS  PubMed  Google Scholar 

  18. Tong K.I., Kobayashi A., Katsuoka F., Yamamoto M. 2006. Two-site substrate recognition model for the Keap1−Nrf2 system: A hinge and latch mechanism. Biol. Chem. 387 (10–11), 1311–1320. https://doi.org/10.1515/BC.2006.164

    Article  CAS  PubMed  Google Scholar 

  19. Tong K.I., Padmanabhan B., Kobayashi A., Shang C., Hirotsu Y., Yokoyama S., Yamamoto M. 2007. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27 (21), 7511–7521. https://doi.org/10.1128/MCB.00753-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kobayashi A., Kang M.-I., Watai Y., Tong K.I., Shibata T., Uchida K., Yamamoto M. 2006. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26 (1), 221–229. https://doi.org/10.1128/MCB.26.1.221-229.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baird L., Llères D., Swift S., Dinkova-Kostova A.T. 2013. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc. Natl. Acad. Sci. U. S. A. 110 (38), 15259–15264. https://doi.org/10.1073/pnas.1305687110

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jain A.K., Bloom D.A., Jaiswal A.K. 2005. Nuclear import and export signals in control of Nrf2. J. Biol. Chem. 280 (32), 29158–29168. https://doi.org/10.1074/jbc.M502083200

    Article  CAS  PubMed  Google Scholar 

  23. Sun Z., Wu T., Zhao F., Lau A., Birch C.M., Zhang D.D. 2011. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol. Cell. Biol. 31 (9), 1800–1811. https://doi.org/10.1128/MCB.05036-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun Z., Zhang S., Chan J.Y., Zhang D.D. 2007. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol. Cell. Biol. 27 (18), 6334–6349. https://doi.org/10.1128/MCB.00630-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuga A., Tsuchida K., Panda H., Horiuchi M., Otsuki A., Taguchi K., Katsuoka F., Suzuki M., Yamamoto M. 2022. The β-TrCP-mediated pathway cooperates with the Keap1-mediated pathway in Nrf2 degradation in vivo. Mol. Cell. Biol. 42 (7), e0056321. https://doi.org/10.1128/mcb.00563-21

    Article  CAS  PubMed  Google Scholar 

  26. Brewer J.W., Diehl J.A. 2000. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. U. S. A. 97 (23), 12625–12630. https://doi.org/10.1073/pnas.220247197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harding H.P., Zhang Y., Ron D. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 397 (6716), 271–274. https://doi.org/10.1038/16729

    Article  CAS  PubMed  Google Scholar 

  28. Cullinan S.B., Zhang D., Hannink M., Arvisais E., Kaufman R.J., Diehl J.A. 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23 (20), 7198–7209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003

  29. Back S.H., Schröder M., Lee K., Zhang K., Kaufman R.J. 2005. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods. 35 (4), 395–416. https://doi.org/10.1016/j.ymeth.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  30. Wu T., Zhao F., Gao B., Tan C., Yagishita N., Nakajima T., Wong P.K., Chapman E., Fang D., Zhang D.D. 2014. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 28 (7), 708–722. https://doi.org/10.1101/gad.238246.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hast B.E., Goldfarb D., Mulvaney K.M., Hast M.A., Siesser P.F., Yan F., Hayes D.N., Major M.B. 2013. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 73 (7), 2199–2210. https://doi.org/10.1158/0008-5472.CAN-12-4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.-A., Outzen H., Øvervatn A., Bjørkøy G., Johansen T. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282 (33), 24131–24145. https://doi.org/10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

  33. Lau A., Wang X.-J., Zhao F., Villeneuve N.F., Wu T., Jiang T., Sun Z., White E., Zhang D.D. 2010. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62. Mol. Cell. Biol. 30 (13), 3275–3285. https://doi.org/10.1128/MCB.00248-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clements C.M., McNally R.S., Conti B.J., Mak T.W., Ting J.P.-Y. 2006. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. U. S. A. 103 (41), 15091–15096. https://doi.org/10.1073/pnas.0607260103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gan L., Johnson D.A., Johnson J.A. 2010. Keap1-Nrf2 activation in the presence and absence of DJ-1. Eur. J. Neurosci. 31 (6), 967–977. https://doi.org/10.1111/j.1460-9568.2010.07138.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tenhunen R., Marver H.S., Schmid R. 1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. U. S. A. 61 (2), 748–755. https://doi.org/10.1073/pnas.61.2.748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calay D., Mason J.C. 2014. The multifunctional role and therapeutic potential of HO-1 in the vascular endothelium. Antioxid. Redox Signal. 20 (11), 1789–1809. https://doi.org/10.1089/ars.2013.5659

    Article  CAS  PubMed  Google Scholar 

  38. Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., Ohta K., Kasahara Y., Koizumi S. 1999. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103 (1), 129–135. https://doi.org/10.1172/JCI4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Radhakrishnan N., Yadav S.P., Sachdeva A., Pruthi P.K., Sawhney S., Piplani T., Wada T., Yachie A. 2011. Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia. J. Pediatr. Hematol. Oncol. 33 (1), 74–78. https://doi.org/10.1097/MPH.0b013e3181fd2aae

    Article  CAS  PubMed  Google Scholar 

  40. Ernster L. 1967. DT diaphorase. In: Methods in Enzymology. Acad. Press. 10, 309–317. https://doi.org/10.1016/0076-6879(67)10059-1

  41. Beyer R.E., Segura-Aguilar J., Di Bernardo S., Cavazzoni M., Fato R., Fiorentini D., Galli M.C., Setti M., Landi L., Lenaz, G. 1996. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc. Natl. Acad. Sci. U. S. A. 93 (6), 2528‒2532. https://doi.org/10.1073/pnas.93.6.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siegel D., Bolton E.M., Burr J.A., Liebler D.C., Ross D. 1997. The reduction of α-tocopherolquinone by human NAD(P)H: Quinone oxidoreductase: The role of α-tocopherolhydroquinone as a cellular antioxidant. Mol. Pharmacol. 52 (2), 300–305. https://doi.org/10.1124/mol.52.2.300

    Article  CAS  PubMed  Google Scholar 

  43. Wu G., Fang Y.-Z., Yang S., Lupton J.R., Turner N.D. 2004. Glutathione metabolism and its implications for health. J. Nutr. 134 (3), 489–492. https://doi.org/10.1093/jn/134.3.489

    Article  CAS  PubMed  Google Scholar 

  44. Han D., Hanawa N., Saberi B., Kaplowitz N. 2006. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 291 (1), G1–G7. https://doi.org/10.1152/ajpgi.00001.2006

    Article  CAS  PubMed  Google Scholar 

  45. Harvey C.J., Thimmulappa R.K., Singh A., Blake D.J., Ling G., Wakabayashi N., Fujii J., Myers A., Biswal S. 2009. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biol. Med. 46 (4), 443–453. https://doi.org/10.1016/j.freeradbiomed.2008.10.040

    Article  CAS  Google Scholar 

  46. Chan J.Y., Kwong M. 2000. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim. Biophys. Acta. 1517 (1), 19–26. https://doi.org/10.1016/s0167-4781(00)00238-4

  47. Furchgott R.F., Zawadzki J.V. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 288 (5789), 373–376. https://doi.org/10.1038/288373a0

    Article  CAS  PubMed  Google Scholar 

  48. Griffith O.W., Stuehr D.J. 1995. Nitric oxide synthases: Properties and catalytic mechanism. Annu. Rev. Physiol. 57, 707–736. https://doi.org/10.1146/annurev.ph.57.030195.003423

    Article  CAS  PubMed  Google Scholar 

  49. Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A.M.J., oude Egbrink M.G.A. 2007. The endothelial glycocalyx: Composition, functions, and visualization. Pflugers Arch. 454 (3), 345–359. https://doi.org/10.1007/s00424-007-0212-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sugahara K., Mikami T., Uyama T., Mizuguchi S., Nomura K., Kitagawa H. 2003. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13 (5), 612–620. https://doi.org/10.1016/j.sbi.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  51. McEver R.P., Moore K.L., Cummings R.D. 1995. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J. Biol. Chem. 270 (19), 11025–11028. https://doi.org/10.1074/jbc.270.19.11025

  52. Dustin M.L., Rothlein R., Bhan A.K., Dinarello C.A., Springer T.A. 1986. Induction by IL 1 and interferon-gamma: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137 (1), 245–254. https://doi.org/10.4049/jimmunol.137.1.245

    Article  CAS  PubMed  Google Scholar 

  53. Sans M., Panés J., Ardite E., Elizalde J.I., Arce Y., Elena M., Palacín A., Fernández-Checa J.C., Anderson D.C., Lobb R., Piqué J.M. 1999. VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis. Gastroenterology. 116 (4), 874–883. https://doi.org/10.1016/s0016-5085(99)70070-3

    Article  CAS  PubMed  Google Scholar 

  54. Lampugnani M.G., Resnati M., Dejana E., Marchisio P.C. 1991. The role of integrins in the maintenance of endothelial monolayer integrity. J. Cell Biol. 112 (3), 479–490. https://doi.org/10.1083/jcb.112.3.479

    Article  CAS  PubMed  Google Scholar 

  55. Gotsch U., Borges E., Bosse R., Böggemeyer E., Simon M., Mossmann H., Vestweber D. 1997. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J. Cell Sci. 110 (5), 583–588. https://doi.org/10.1242/jcs.110.5.583

    Article  CAS  PubMed  Google Scholar 

  56. Constantinescu A.A., Vink H., Spaan J.A.E. 2003. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23 (9), 1541–1547. https://doi.org/10.1161/01.ATV.0000085630.24353.3D

    Article  CAS  PubMed  Google Scholar 

  57. Jacob M., Bruegger D., Rehm M., Welsch U., Conzen P., Becker B.F. 2006. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology. 104 (6), 1223–1231. https://doi.org/10.1097/00000542-200606000-00018

    Article  CAS  PubMed  Google Scholar 

  58. Castro-Ferreira R., Cardoso R., Leite-Moreira A., Mansilha A. 2018. The role of endothelial dysfunction and inflammation in chronic venous disease. Ann. Vasc. Surg. 46, 380–393. https://doi.org/10.1016/j.avsg.2017.06.131

    Article  PubMed  Google Scholar 

  59. Weber C., Noels H. 2011. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 17 (11), 1410–1422. https://doi.org/10.1038/nm.2538

    Article  CAS  PubMed  Google Scholar 

  60. Ng H.H., Leo C.H., Parry L.J., Ritchie R.H. 2018. Relaxin as a therapeutic target for the cardiovascular complications of diabetes. Front. Pharmacol. 9, 501. https://doi.org/10.3389/fphar.2018.00501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baszczuk A., Kopczyński Z., Thielemann A. 2014. Endothelial dysfunction in patients with primary hypertension and hyperhomocysteinemia. Postepy Hig. Med. Dosw. 68, 91–100. https://doi.org/10.5604/17322693.1087521

    Article  Google Scholar 

  62. De Lorenzo A., Escobar S., Tibiriçá E. 2020. Systemic endothelial dysfunction: A common pathway for COVID-19, cardiovascular and metabolic diseases. Nutr. Metab. Cardiovasc. Dis. 30 (8), 1401–1402. https://doi.org/10.1016/j.numecd.2020.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cen M., Ouyang W., Zhang W., Yang L., Lin X., Dai M., Hu H., Tang H., Liu H., Xia J., Xu, F. 2021. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 41, 101936. https://doi.org/10.1016/j.redox.2021.101936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grimsrud P.A., Xie H., Griffin T.J., Bernlohr D.A. 2008. Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem. 283 (32), 21837–21841. https://doi.org/10.1074/jbc.R700019200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen X.-L., Dodd G., Thomas S., Zhang X., Wasserman M.A., Rovin B.H., Kunsch C. 2006. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol. 290 (5), H1862–H1870. https://doi.org/10.1152/ajpheart.00651.2005

    Article  CAS  PubMed  Google Scholar 

  66. Donovan E.L., McCord J.M., Reuland D.J., Miller B.F., Hamilton K.L. 2012. Phytochemical activation of Nrf2 protects human coronary artery endothelial cells against an oxidative challenge. Oxid. Med. Cell. Longev. 2012, 132931. https://doi.org/10.1155/2012/132931

  67. Chen M., Zhang M., Zhang X., Li J., Wang Y., Fan Y., Shi R. 2015. Limb ischemic preconditioning protects endothelium from oxidative stress by enhancing Nrf2 translocation and upregulating expression of antioxidases. PLoS One. 10, e0128455. https://doi.org/10.1371/journal.pone.0128455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cortese M.M., Suschek C.V., Wetzel W., Kröncke K.D., Kolb-Bachofen V. 2008. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radical Biol. Med. 44 (12), 2002–2012. https://doi.org/10.1016/j.freeradbiomed.2008.02.013

    Article  CAS  Google Scholar 

  69. Li X., Zhang Q., Hou N., Li J., Liu M., Peng S., Zhang Y., Luo Y., Zhao B., Wang S., Zhang Y. 2019. Carnosol as a Nrf2 activator improves endothelial barrier function through antioxidative mechanisms. Int. J. Mol. Sci. 20 (4), 800. https://doi.org/10.3390/ijms20040880

    Article  CAS  Google Scholar 

  70. Chen Z.-W., Miu H.-F., Wang H.-P., Wu Z.-N., Wang W.-J., Ling Y.-J., Xu X.-H., Sun H.-J., Jiang X. 2018. Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of Keap1/Nrf2/HO-1 signaling. Int. Urol. Nephrol. 50 (3), 559–570. https://doi.org/10.1007/s11255-017-1734-4

    Article  CAS  PubMed  Google Scholar 

  71. Teixeira T.M., da Costa D.C., Resende A.C., Soulage C.O., Bezerra F.F., Daleprane J.B. 2017. Activation of Nrf2-antioxidant signaling by 1,25-dihydroxycholecalciferol prevents leptin-induced oxidative stress and inflammation in human endothelial cells. J. Nutr. 147 (4), 506–513. https://doi.org/10.3945/jn.116.239475

    Article  CAS  PubMed  Google Scholar 

  72. Rajendran P., Alzahrani A.M., Ahmed E.A., Veeraraghavan V.P. 2021. Kirenol inhibits B[a]P-induced oxidative stress and apoptosis in endothelial cells via modulation of the Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2021, 5585303. https://doi.org/10.1155/2021/5585303

  73. Ismail M.B., Rajendran P., AbuZahra H.M., Veeraraghavan V.P. 2021. Mangiferin inhibits apoptosis in doxorubicin-induced vascular endothelial cells via the Nrf2 signaling pathway. Int. J. Mol. Sci. 22 (8), 4259. https://doi.org/10.3390/ijms22084259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Montorfano I., Becerra A., Cerro R., Echeverría C., Sáez E., Morales M.G., Fernández R., Cabello-Verrugio C., Simon F. 2014. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. Lab. Invest. 94 (10), 1068–1082. https://doi.org/10.1038/labinvest.2014.100

    Article  CAS  PubMed  Google Scholar 

  75. Saito A. 2013. EMT and EndMT: Regulated in similar ways? J. Biochem. 153 (6), 493–495. https://doi.org/10.1093/jb/mvt032

    Article  CAS  PubMed  Google Scholar 

  76. Good R.B., Gilbane A.J., Trinder S.L., Denton C.P., Coghlan G., Abraham D.J., Holmes A.M. 2015. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am. J. Pathol. 185 (7), 1850–1858. https://doi.org/10.1016/j.ajpath.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  77. Zeisberg E.M., Tarnavski O., Zeisberg M., Dorfman A.L., McMullen J.R., Gustafsson E., Chandraker A., Yuan X., Pu W.T., Roberts A.B., Neilson E.G. 2007. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13 (8), 952–961. https://doi.org/10.1038/nm1613

    Article  CAS  PubMed  Google Scholar 

  78. Rieder F., Kessler S.P., West G.A., Bhilocha S., de la Motte C., Sadler T.M., Gopalan B., Stylianou E., Fiocchi C. 2011. Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis. Am. J. Pathol. 179 (5), 2660–2673. https://doi.org/10.1016/j.ajpath.2011.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen Y., Yuan T., Zhang H., Yan Y., Wang D., Fang L., Lu Y., Du G. 2017. Activation of Nrf2 attenuates pulmonary vascular remodeling via inhibiting endothelial-to-mesenchymal transition: An insight from a plant polyphenol. Int. J. Biol. Sci. 13 (8), 1067–1081. https://doi.org/10.7150/ijbs.20316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vásquez-Vivar J., Kalyanaraman B., Martásek P., Hogg N., Masters B.S., Karoui H., Tordo P., Pritchard K.A., Jr. 1998. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc. Natl. Acad. Sci. U. S. A. 95 (16), 9220–9225. https://doi.org/10.1073/pnas.95.16.9220

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stuehr D., Pou S., Rosen G.M. 2001. Oxygen reduction by nitric-oxide synthases. J. Biol. Chem. 276 (18), 14533–14536. https://doi.org/10.1074/jbc.R100011200

    Article  CAS  PubMed  Google Scholar 

  82. Alp N.J., Channon K.M. 2004. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler. Thromb. Vasc. Biol. 24 (3), 413–420. https://doi.org/10.1161/01.ATV.0000110785.96039.f6

    Article  CAS  PubMed  Google Scholar 

  83. Li H., Förstermann U. 2013. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr. Opin. Pharmacol. 13 (2), 161–167. https://doi.org/10.1016/j.coph.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  84. Beckman J.S., Koppenol W.H. 1996. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 271 (5), C1424–C1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424

    Article  CAS  PubMed  Google Scholar 

  85. Heiss E.H., Schachner D., Werner E.R., Dirsch V.M. 2009. Active NF-E2-related factor (Nrf2) contributes to keep endothelial NO synthase (eNOS) in the coupled state: Role of reactive oxygen species (ROS), eNOS, and heme oxygenase (HO-1) levels. J. Biol. Chem. 284 (46), 31579–31586. https://doi.org/10.1074/jbc.M109.009175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pendyala S., Gorshkova I.A., Usatyuk P.V., He D., Pennathur A., Lambeth J.D., Thannickal V.J., Natarajan V. 2009. Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid. Redox Signal. 11 (4), 747–764. https://doi.org/10.1089/ars.2008.2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pendyala S., Moitra J., Kalari S., Kleeberger S.R., Zhao Y., Reddy S.P., Garcia J.G.N., Natarajan V. 2011. Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: Identification of functional antioxidant response elements on the Nox4 promoter. Free Radical Biol. Med. 50 (12), 1749–1759. https://doi.org/10.1016/j.freeradbiomed.2011.03.022

    Article  CAS  Google Scholar 

  88. Chen H., Xie K., Han H., Li Y., Liu L., Yang T., Yu Y. 2015. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int. Immunopharmacol. 28 (1), 643–654. https://doi.org/10.1016/j.intimp.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  89. Lin Q., Qin X., Shi M., Qin Z., Meng Y., Qin Z., Guo S. 2017. Schisandrin B inhibits LPS-induced inflammatory response in human umbilical vein endothelial cells by activating Nrf2. Int. Immunopharmacol. 49, 142–147. https://doi.org/10.1016/j.intimp.2017.05.032

    Article  CAS  PubMed  Google Scholar 

  90. Gao F., Li J.-M., Xi C., Li H.-H., Liu Y.-L., Wang Y.-P., Xuan L.-J. 2019. Magnesium lithospermate B protects the endothelium from inflammation-induced dysfunction through activation of Nrf2 pathway. Acta Pharmacol. Sin. 40 (7), 867–878. https://doi.org/10.1038/s41401-018-0189-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li C., Zhang W.-J., Frei B. 2016. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol. 9, 104–113. https://doi.org/10.1016/j.redox.2016.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fratantonio D., Speciale A., Molonia M.S., Bashllari R., Palumbo M., Saija A., Cimino F., Monastra G., Virgili F. 2018. Alpha-lipoic acid, but not di-hydrolipoic acid, activates Nrf2 response in primary human umbilical-vein endothelial cells and protects against TNF-α induced endothelium dysfunction. Arch. Biochem. Biophys. 655, 18–25. https://doi.org/10.1016/j.abb.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  93. Gimbrone M.A., Jr, García-Cardeña G. 2013. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc. Pathol. 22 (1), 9–15. https://doi.org/10.1016/j.carpath.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  94. Davies P.F. 2009. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6 (1), 16–26. https://doi.org/10.1038/ncpcardio1397

    Article  CAS  PubMed  Google Scholar 

  95. Fang Y., Wu D., Birukov K.G. 2019. Mechanosensing and mechanoregulation of endothelial cell functions. Compr. Physiol. 9 (2), 873–904. https://doi.org/10.1002/cphy.c180020

    Article  PubMed  PubMed Central  Google Scholar 

  96. Davies P.F., Civelek M., Fang Y., Fleming I. 2013. The atherosusceptible endothelium: Endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99 (2), 315–327. https://doi.org/10.1093/cvr/cvt101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nayak L., Lin Z., Jain M.K. 2011. “Go with the flow:” How Krüppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxid. Redox Signal. 15 (5), 1449–1461. https://doi.org/10.1089/ars.2010.3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen X.-L., Varner S.E., Rao A.S., Grey J.Y., Thomas S., Cook C.K., Wasserman M.A., Medford R.M., Jaiswal A.K., Kunsch C. 2003. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells: A novel anti-inflammatory mechanism . J. Biol. Chem. 278 (2), 703–711. https://doi.org/10.1074/jbc.M203161200

    Article  CAS  PubMed  Google Scholar 

  99. Ishii T., Warabi E., Mann G.E. 2021. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol. 46, 102103. https://doi.org/10.1016/j.redox.2021.102103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dekker R.J., van Soest S., Fontijn R.D., Salamanca S., de Groot P.G., VanBavel E., Pannekoek H., Horrevoets A.J.G. 2002. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood. 100 (5), 1689–1698. https://doi.org/10.1182/blood-2002-01-0046

    Article  CAS  PubMed  Google Scholar 

  101. Fledderus J.O., Boon R.A., Volger O.L., Hurttila H., Ylä-Herttuala S., Pannekoek H., Levonen A.-L., Horrevoets A.J.G. 2008. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28 (7), 1339–1346. https://doi.org/10.1161/ATVBAHA.108.165811

    Article  CAS  PubMed  Google Scholar 

  102. Takabe W., Warabi E., Noguchi N. 2011. Anti-atherogenic effect of laminar shear stress via Nrf2 activation. Antioxid. Redox Signal. 15 (5), 1415–1426. https://doi.org/10.1089/ars.2010.3433

    Article  CAS  PubMed  Google Scholar 

  103. Dai G., Vaughn S., Zhang Y., Wang E.T., Garcia-Cardena G., Gimbrone M.A. Jr. 2007. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ. Res. 101 (7), 723–733. https://doi.org/10.1161/CIRCRESAHA.107.152942

    Article  CAS  PubMed  Google Scholar 

  104. Warabi E., Takabe W., Minami T., Inoue K., Itoh K., Yamamoto M., Ishii T., Kodama T., Noguchi N. 2007. Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: Role of reactive oxygen/nitrogen species. Free Radical Biol. Med. 42 (2), 260–269. https://doi.org/10.1016/j.freeradbiomed.2006.10.043

    Article  CAS  Google Scholar 

  105. Ward A.O., Sala-Newby G.B., Ladak S., Angelini G.D., Caputo M., Suleiman M.-S., Evans P.C., George S.J., Zakkar M. 2022. Nrf2-Keap-1 imbalance under acute shear stress induces inflammatory response in venous endothelial cells. Perfusion. 37 (6), 582–589. https://doi.org/10.1177/02676591211012571

    Article  PubMed  Google Scholar 

  106. Kattoor A.J., Pothineni N.V.K., Palagiri D., Mehta J.L. 2017. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 19 (11), 42. https://doi.org/10.1007/s11883-017-0678-6

    Article  CAS  PubMed  Google Scholar 

  107. Gimbrone M.A. Jr, García-Cardeña G. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118 (4), 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu Y.-J., Zheng L., Hu Y.-W., Wang Q. 2018. Pyroptosis and its relationship to atherosclerosis. Clin. Chim. Acta. 476, 28–37. https://doi.org/10.1016/j.cca.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  109. Crea F., Libby P. 2017. Acute coronary syndromes: The way forward from mechanisms to precision treatment. Circulation. 136, 1155–1166. https://doi.org/10.1161/CIRCULATIONAHA.117.029870

    Article  PubMed  PubMed Central  Google Scholar 

  110. Celletti F.L., Waugh J.M., Amabile P.G., Brendolan A., Hilfiker P.R., Dake M.D. 2001. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med. 7 (4), 425–429. https://doi.org/10.1038/86490

    Article  CAS  PubMed  Google Scholar 

  111. Bennett M.R., Sinha S., Owens G.K. 2016. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118 (4), 692‒702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fruhwirth G.O., Loidl A., Hermetter A. 2007. Oxidized phospholipids: From molecular properties to disease. Biochim. Biophys. Acta. 1772 (7), 718–736. https://doi.org/10.1016/j.bbadis.2007.04.009

  113. Bochkov V.N., Oskolkova O.V., Birukov K.G., Levonen A.-L., Binder C.J., Stöckl J. 2010. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 12 (8), 1009–1059. https://doi.org/10.1089/ars.2009.2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Garbin U., Pasini A. F., Stranieri C., Cominacini M., Pasini A., Manfro S., Lugoboni F., Mozzini C., Guidi G.C., Faccini G., Cominacini L. 2009. Cigarette smoking blocks the protective expression of Nrf2/ARE pathway in peripheral mononuclear cells of young heavy smokers favouring inflammation. PLoS One. 4, e8225. https://doi.org/10.1371/journal.pone.0008225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cui M., Cui R., Liu K., Dong J.-Y., Imano H., Hayama-Terada M., Muraki I., Kiyama M., Okada T., Kitamura A., Umesawa M., Yamagishi K., Ohira T., Iso H. 2018. Associations of tobacco smoking with impaired endothelial function: The circulatory risk in communities study (CIRCS). J. Atheroscler. Thromb. 25 (9), 836–845. https://doi.org/10.5551/jat.42150

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fratta Pasini A., Albiero A., Stranieri C., Cominacini M., Pasini A., Mozzini C., Vallerio P., Cominacini L., Garbin U. 2012. Serum oxidative stress-induced repression of Nrf2 and GSH depletion: A mechanism potentially involved in endothelial dysfunction of young smokers. PLoS One. 7, e30291. https://doi.org/10.1371/journal.pone.0030291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jyrkkänen H.-K., Kansanen E., Inkala M., Kivelä A.M., Hurttila H., Heinonen S.E., Goldsteins G., Jauhiainen S., Tiainen S., Makkonen H., Oskolkova O., Afonyushkin T., Koistinaho J., Yamamoto M., Bochkov V.N., Ylä-Herttuala S., Levonen A.-L. 2008. Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ. Res. 103, e1–e9. https://doi.org/10.1161/CIRCRESAHA.108.176883

    Article  CAS  PubMed  Google Scholar 

  118. Wu X., Zhang H., Qi W., Zhang Y., Li J., Li Z., Lin Y., Bai X., Liu X., Chen X., Yang H., Xu C., Zhang Y., Yang B. 2018. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9 (2), 171. https://doi.org/10.1038/s41419-017-0257-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao Z., Wang X., Zhang R., Ma B., Niu S., Di X., Ni L., Liu C. 2021. Melatonin attenuates smoking-induced atherosclerosis by activating the Nrf2 pathway via NLRP3 inflammasomes in endothelial cells. Aging. 13 (8), 11363–11380. https://doi.org/10.18632/aging.202829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Opie L.H., Walfish P.G. 1963. Plasma free fatty acid concentrations in obesity. N. Engl. J. Med. 268, 757–760. https://doi.org/10.1056/NEJM196304042681404

    Article  CAS  PubMed  Google Scholar 

  121. Fratantonio D., Speciale A., Ferrari D., Cristani M., Saija A., Cimino F. 2015. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol. Lett. 239 (3), 152–160. https://doi.org/10.1016/j.toxlet.2015.09.020

    Article  CAS  PubMed  Google Scholar 

  122. Mahmoud A.M., Wilkinson F.L., Jones A.M., Wilkinson J.A., Romero M., Duarte J., Alexander M.Y. 2017. A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling. Biochim. Biophys. Acta, Gen. Subj. 1861, 3311–3322. https://doi.org/10.1016/j.bbagen.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  123. Gao S., Zhao D., Wang M., Zhao F., Han X., Qi Y., Liu J. 2017. Association between circulating oxidized LDL and atherosclerotic cardiovascular disease: A meta-analysis of observational studies. Can. J. Cardiol. 33, 1624–1632. https://doi.org/10.1016/j.cjca.2017.07.015

    Article  PubMed  Google Scholar 

  124. Huang C.-S., Lin A.-H., Liu C.-T., Tsai C.-W., Chang I.-S., Chen H.-W., Lii C.-K. 2013. Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation. Mol. Nutr. Food Res. 57, 1918–1930. https://doi.org/10.1002/mnfr.201300063

    Article  CAS  PubMed  Google Scholar 

  125. Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., Morrison B., Stockwell B.R. 2012. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149 (5), 1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bai T., Li M., Liu Y., Qiao Z., Wang Z. 2020. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radical Biol. Med. 160, 92–102. https://doi.org/10.1016/j.freeradbiomed.2020.07.026

    Article  CAS  Google Scholar 

  127. Vinchi F., Porto G., Simmelbauer A., Altamura S., Passos S. T., Garbowski M., Silva A. M. N., Spaich S., Seide S.E., Sparla R., Hentze M.W., Muckenthaler M.U. 2020. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur. Heart J. 41, 2681–2695. https://doi.org/10.1093/eurheartj/ehz112

    Article  CAS  PubMed  Google Scholar 

  128. Guo Z., Ran Q., Roberts L.J. 2nd, Zhou L., Richardson A., Sharan C., Wu D., Yang H. 2008. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radical Biol. Med. 44, 343–352. https://doi.org/10.1016/j.freeradbiomed.2007.09.009

    Article  CAS  Google Scholar 

  129. Yang K., Song H., Yin D. 2021. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J. Cardiovasc. Pharmacol. 77, 767–776. https://doi.org/10.1097/FJC.0000000000001030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. He L., Liu Y.-Y., Wang K., Li C., Zhang W., Li Z.-Z., Huang X.-Z., Xiong Y. 2021. Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem. Biophys. Res. Commun. 575, 1–7. https://doi.org/10.1016/j.bbrc.2021.08.067

    Article  CAS  PubMed  Google Scholar 

  131. Meng N., Chen K., Wang Y., Hou J., Chu W., Xie S., Yang F., Sun C. 2022. Dihydrohomoplantagin and homoplantaginin, major flavonoid glycosides from Salvia plebeia R. Br. inhibit oxLDL-induced endothelial cell injury and restrict atherosclerosis via activating Nrf2 anti-oxidation signal pathway. Molecules. 27 (6), 1990.https://doi.org/10.3390/molecules27061990

  132. Zhang T., Hu Q., Shi L., Qin L., Zhang Q., Mi M. 2016. Equol attenuates atherosclerosis in apolipoprotein E-deficient mice by inhibiting endoplasmic reticulum stress via activation of Nrf2 in endothelial cells. PLoS One. 11 (12), e0167020. https://doi.org/10.1371/journal.pone.0167020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhu Y., Zhang Y., Huang X., Xie Y., Qu Y., Long H., Gu N., Jiang W. 2019. Z-ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 284, 110–120. https://doi.org/10.1016/j.atherosclerosis.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  134. Juan S.H., Lee T.S., Tseng K.W., Liou J.Y., Shyue S.K., Wu K.K., Chau L.Y. 2001. Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation. 104 (13), 1519–1525. https://doi.org/10.1161/hc3801.095663

    Article  CAS  PubMed  Google Scholar 

  135. Sussan T.E., Jun J., Thimmulappa R., Bedja D., Antero M., Gabrielson K.L., Polotsky V.Y., Biswal S. 2008. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One. 3 (11), e3791. https://doi.org/10.1371/journal.pone.0003791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Freigang S., Ampenberger F., Spohn G., Heer S., Shamshiev A.T., Kisielow J., Hersberger M., Yamamoto M., Bachmann M.F., Kopf M. 2011. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur. J. Immunol. 41 (7), 2040–2051. https://doi.org/10.1002/eji.201041316

    Article  CAS  PubMed  Google Scholar 

  137. Barajas B., Che N., Yin F., Rowshanrad A., Orozco L.D., Gong K.W., Wang X., Castellani L.W., Reue K., Lusis A.J., Araujo J.A. 2011. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 31 (1), 58–66. https://doi.org/10.1161/ATVBAHA.110.210906

    Article  CAS  PubMed  Google Scholar 

  138. Folli F., Corradi D., Fanti P., Davalli A., Paez A., Giaccari A., Perego C., Muscogiuri G. 2011. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev. 7 (5), 313–324. https://doi.org/10.2174/157339911797415585

    Article  CAS  PubMed  Google Scholar 

  139. Nieuwdorp M., van Haeften T.W., Gouverne-ur M.C.L.G., Mooij H.L., van Lieshout M.H.P., Levi M., Meijers J.C.M., Holleman F., Hoekst-ra J.B.L., Vink H., Kastelein J.J.P., Stroes E.S.G. 2006. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 55 (2), 480–486. https://doi.org/10.2337/diabetes.55.02.06.db05-1103

    Article  CAS  PubMed  Google Scholar 

  140. Nobe K., Miyatake M., Sone T., Honda K. 2006. High-glucose-altered endothelial cell function involves both disruption of cell-to-cell connection and enhancement of force development. J. Pharmacol. Exp. Ther. 318 (2), 530–539. https://doi.org/10.1124/jpet.106.105015

    Article  CAS  PubMed  Google Scholar 

  141. Baumgartner-Parzer S.M., Wagner L., Pettermann M., Grillari J., Gessl A., Waldhäusl W. 1995. High-glucose–triggered apoptosis in cultured endothelial cells. Diabetes. 44 (11), 1323–1327. https://doi.org/10.2337/diab.44.11.1323

    Article  CAS  PubMed  Google Scholar 

  142. Du X.L., Edelstein D., Dimmeler S., Ju Q., Sui C., Brownlee M. 2001. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Invest. 108 (9), 1341–1348. https://doi.org/10.1172/JCI11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Morigi M., Angioletti S., Imberti B., Donadelli R., Micheletti G., Figliuzzi M., Remuzzi A., Zoja C., Remuzzi G. 1998. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J. Clin. Invest. 101 (9), 1905–1915. https://doi.org/10.1172/JCI656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Okouchi M., Okayama N., Alexander J.S., Aw T.Y. 2006. NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia-induced brain endothelial cell apoptosis. Curr. Neurovasc. Res. 3 (4), 249–261. https://doi.org/10.2174/156720206778792876

    Article  CAS  PubMed  Google Scholar 

  145. Yang M.-Y., Fan Z., Zhang Z., Fan J. 2021. MitoQ protects against high glucose-induced brain microvascular endothelial cells injury via the Nrf2/HO-1 pathway. J. Pharmacol. Sci. 145 (1), 105–114. https://doi.org/10.1016/j.jphs.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  146. Wang R.-Y. Liu L.-H., Liu H., Wu K.-F., An J., Wang Q., Liu E., Bai L.-J., Qi B.-M., Qi B.-L., Zhang L. 2018. Nrf2 protects against diabetic dysfunction of endothelial progenitor cells via regulating cell senescence. Int. J. Mol. Med. 42 (3), 1327–1340. https://doi.org/10.3892/ijmm.2018.3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cheng X., Chapple S.J., Patel B., Puszyk W., Sugden D., Yin X., Mayr M., Siow R.C.M., Mann G.E. 2013. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero. Diabetes. 62 (12), 4088–4097. https://doi.org/10.2337/db13-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen X., Qi J., Wu Q., Jiang H., Wang J., Chen W., Mao A., Zhu M. 2020. High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression. Acta Biochim. Biophys. Sin. 52 (5), 506–516. https://doi.org/10.1093/abbs/gmaa023

    Article  CAS  PubMed  Google Scholar 

  149. Wu J., Jiang Z., Zhang H., Liang W., Huang W., Zhang H., Li Y., Wang Z., Wang J., Jia Y., Liu B., Wu H. 2018. Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2. Free Radical Biol. Med. 124, 454–465. https://doi.org/10.1016/j.freeradbiomed.2018.06.034

    Article  CAS  Google Scholar 

  150. Sun C.C., Lai Y.N., Wang W.H., Xu X.M., Li X.Q., Wang H., Zheng J.Y., Zheng J.Q. 2020. Metformin ameliorates gestational diabetes mellitus-induced endothelial dysfunction via downregulation of p65 and upregulation of Nrf2. Front. Pharmacol. 11, 575390. https://doi.org/10.3389/fphar.2020.575390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang F., Pu C., Zhou P., Wang P., Liang D., Wang Q., Hu Y., Li B., Hao X. 2015. Cinnamaldehyde prevents endothelial dysfunction induced by high glucose by activating Nrf2. Cell. Physiol. Biochem. 36 (1), 315–324. https://doi.org/10.1159/000374074

    Article  CAS  PubMed  Google Scholar 

  152. Wang D., Hou J., Wan J., Yang Y., Liu S., Li X., Li W., Dai X., Zhou P., Liu W., Wang P. 2021. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. J. Int. Med. Res. 49 (1), 300060520985363. https://doi.org/10.1177/0300060520985363

    Article  CAS  PubMed  Google Scholar 

  153. Verhamme P., Hoylaerts M.F. 2006. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin. Belg. 61 (5), 213–219. https://doi.org/10.1179/acb.2006.036

    Article  CAS  PubMed  Google Scholar 

  154. Lum H., Roebuck K.A. 2001. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell Physiol. 280 (4), C719–C741. https://doi.org/10.1152/ajpcell.2001.280.4.C719

    Article  CAS  PubMed  Google Scholar 

  155. Yang S., Zheng Y., Hou X. 2019. Lipoxin A4 restores oxidative stress-induced vascular endothelial cell injury and thrombosis-related factor expression by its receptor-mediated activation of Nrf2-HO-1 axis. Cell. Signal. 60, 146–153. https://doi.org/10.1016/j.cellsig.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  156. Akin-Bali D.F., Eroglu T., Ilk S., Egin Y., Kankilic T. 2020. Evaluation of the role of Nrf2/Keap1 pathway-associated novel mutations and gene expression on antioxidant status in patients with deep vein thrombosis. Exp. Ther. Med. 20 (2), 868–881. https://doi.org/10.3892/etm.2020.8790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li C.-Q., Wogan G.N. 2005. Nitric oxide as a modulator of apoptosis. Cancer Lett. 226 (1), 1–15. https://doi.org/10.1016/j.canlet.2004.10.021

    Article  CAS  PubMed  Google Scholar 

  158. Um H.-C., Jang J.-H., Kim D.-H., Lee C., Surh Y.-J. 2011. Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide. 25 (2), 161–168. https://doi.org/10.1016/j.niox.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  159. Franceschi C., Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Ser. A. 69 (Suppl. 1), S4–S9. https://doi.org/10.1093/gerona/glu057

    Article  Google Scholar 

  160. Guarner V., Rubio-Ruiz M.E. 2015. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip. Top. Gerontol. 40, 99–106. https://doi.org/10.1159/000364934

    Article  PubMed  Google Scholar 

  161. Csiszar A., Ungvari Z., Edwards J.G., Kaminski P., Wolin M.S., Koller A., Kaley G. 2002. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ. Res. 90 (11), 1159–1166. https://doi.org/10.1161/01.res.0000020401.61826.ea

    Article  CAS  PubMed  Google Scholar 

  162. Ungvari Z., Tarantini S., Donato A.J., Galvan V., Csiszar A. 2018. Mechanisms of vascular aging. Circ. Res. 123 (7), 849–867. https://doi.org/10.1161/CIRCRESAHA.118.311378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Csiszar A., Ungvari Z., Koller A., Edwards J.G., Kaley G. 2004. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol. Genomics. 17, 21–30. https://doi.org/10.1152/physiolgenomics.00136.2003

    Article  CAS  PubMed  Google Scholar 

  164. Ungvari Z., Bailey-Downs L., Sosnowska D., Gautam T., Koncz P., Losonczy G., Ballabh P., de Cabo R., Sonntag W.E., Csiszar A. 2011. Vascular oxidative stress in aging: A homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 301 (2), H363–H372. https://doi.org/10.1152/ajpheart.01134.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chapple S.J., Siow R.C.M., Mann G.E. 2012. Crosstalk between Nrf2 and the proteasome: Therapeutic potential of Nrf2 inducers in vascular disease and aging. Int. J. Biochem. Cell Biol. 44 (8), 1315–1320. https://doi.org/10.1016/j.biocel.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  166. Kloska D., Kopacz A., Piechota-Polanczyk A., Nowak W.N., Dulak J., Jozkowicz A., Grochot-Przeczek A. 2019. Nrf2 in aging—Focus on the cardiovascular system. Vascul. Pharmacol. 112, 42–53. https://doi.org/10.1016/j.vph.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  167. Valcarcel-Ares M.N., Gautam T., Warrington J.P., Bailey-Downs L., Sosnowska D., de Cabo R., Losonczy G., Sonntag W.E., Ungvari Z., Csiszar A. 2012. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: Implications for microvascular aging. J. Gerontol., Ser. A. 67 (8), 821–829. https://doi.org/10.1093/gerona/glr229

    Article  CAS  Google Scholar 

  168. van Deursen J.M. 2014. The role of senescent cells in ageing. Nature. 509, 439–446. https://doi.org/10.1038/nature13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fulop G.A., Kiss T., Tarantini S., Balasubramanian P., Yabluchanskiy A., Farkas E., Bari F., Ungvari Z., Csiszar A. 2018. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience. 40, 513–521. https://doi.org/10.1007/s11357-018-0047-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Romero A., San Hipólito-Luengo Á., Villalobos L.A., Vallejo S., Valencia I., Michalska P., Pajuelo-Lozano N., Sánchez-Pérez I., León R., Bartha J.L., Sanz M.J., Erusalimsky J.D., Sánchez-Ferrer C.F., Romacho T., Peiró C. 2019. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell. 18 (3), e12913. https://doi.org/10.1111/acel.12913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Arefin S., Buchanan S., Hobson S., Steinmetz J., Alsalhi S., Shiels P.G., Kublickiene K., Stenvinkel P. 2020. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin. Chim. Acta. 505, 108–118. https://doi.org/10.1016/j.cca.2020.02.026

    Article  CAS  PubMed  Google Scholar 

  172. Zinovkin R.A., Kondratenko N.D., Zinovkina L.A. 2022. Does Nrf2 play a role of a master regulator of mammalian aging? Biochemistry. 87, 1465–1476. https://doi.org/10.1134/S0006297922120045

    Article  CAS  PubMed  Google Scholar 

  173. Pillai R., Hayashi M., Zavitsanou A.-M., Papagiannakopoulos T. 2022. NRF2: KEAPing tumors protected. Cancer Discov. 12 (3), 625–643. https://doi.org/10.1158/2159-8290.CD-21-0922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu S., Lu H., Bai Y. 2019. Nrf2 in cancers: A double-edged sword. Cancer Med. 8 (5), 2252–2267. https://doi.org/10.1002/cam4.2101

    Article  PubMed  PubMed Central  Google Scholar 

  175. Rojo de la Vega M., Chapman E., Zhang D.D. 2018. NRF2 and the hallmarks of cancer. Cancer Cell. 34 (1), 21–43. https://doi.org/10.1016/j.ccell.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  176. Wang Y.-Y., Chen J., Liu X.-M., Zhao R., Zhe H. 2018. Nrf2-mediated metabolic reprogramming in cancer. Oxid. Med. Cell. Longev. 2018, 9304091. https://doi.org/10.1155/2018/9304091

  177. Ji X., Wang H., Zhu J., Zhu L., Pan H., Li W., Zhou Y., Cong Z., Yan F., Chen S. 2014. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Int. J. Cancer. 135 (3), 574–584. https://doi.org/10.1002/ijc.28699

    Article  CAS  PubMed  Google Scholar 

  178. Toth R.K., Warfel N.A. 2017. Strange bedfellows: Nuclear factor, erythroid 2-like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants (Basel). 6 (2), 27. https://doi.org/10.3390/antiox6020027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Liu C., Vojnovic D., Kochevar I.E., Jurkunas U.V. 2016. UV-A irradiation activates Nrf2-regulated antioxidant defense and induces p53/caspase3-dependent apoptosis in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 57, 2319–2327. https://doi.org/10.1167/iovs.16-19097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chen X.-L., Varner, S.E., Rao, A.S., Grey, J.Y., Thomas, S., Cook, C.K., Wasserman M.A., Medford R.M., Jaiswal A.K., Kunsch C. 2003. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells: A novel anti-inflammatory mechanism. J. Biol. Chem. 278 (2), 703–711. https://doi.org/10.1074/jbc.M203161200

    Article  CAS  PubMed  Google Scholar 

  181. Wei Y., Gong J., Thimmulappa R.K., Kosmider B., Biswal S., Duh E.J. 2013. Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc. Natl. Acad. Sci. U. S. A. 110 (41), E3910–E3918. https://doi.org/10.1073/pnas.1309276110

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A. Prikhod’ko for useful criticism and help in manuscript editing.

Funding

This work was supported by the Russian Science Foundation (project no. 23-14-00061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Zinovkin.

Ethics declarations

This work does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: PKB (Akt), protein kinase B; ARE, antioxidant response element; BH4, tetrahydrobiopterin; PARK7 (DJ-1), Parkinson disease protein 7; eNOS, endothelial NO synthase; GCLC, glutamate-cysteine ligase catalytic subunit; GSH, glutathione; ICAM-1, intercellular adhesion molecule 1; KEAP1, Kelch-like ECH-associated protein 1; Maf , musculoaponeurotic fibrosarcoma transcription factor; Neh domain, NRF2-ECH homology domain; Nox4, NADPH oxidase 4; NRF2, nuclear factor erythroid-2-related factor 2; SQSTM1 (p62), sequestosome 1; PAPC, 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine; VCAM-1, vascular cell adhesion molecule 1; β-TrCP, β-transducin repeat-containing protein; ROS, reactive oxygen species; CVD, cardiovascular disease; aa, amino acid residues (only with numbers).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratenko, N.D., Zinovkina, L.A. & Zinovkin, R.A. Transcription Factor NRF2 in Endothelial Functions. Mol Biol 57, 1052–1069 (2023). https://doi.org/10.1134/S0026893323060092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060092

Keywords:

Navigation