Skip to main content
Log in

Spatial Reconstruction of TRPC Mechanoreceptors of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865

  • BIOINFORMATICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—The ctenophore Mnemiopsis leidyi A. Agassiz, 1865 responds to gentle mechanical stimulus with intense luminescence; however, the mechanism of this phenomenon is unknown. We searched for possible mechanosensitive receptors that initiate signal transduction resulting in photoprotein luminescence. The three orthologous genes of mouse (5z96) and drosophila (5vkq) TRPC-proteins, such as ML234550a-PA (860 a.a.), ML03701a-PA (828 a.a.), and ML038011a-PA (1395 a.a.), were found in the M. leidyi genome. The latter protein contains a long ankyrin helix consisting of 16 ANK domains. Study of the annotated domains and the network of interactions between the interactome proteins suggests that the ML234550a-PA and ML03701a-PA proteins carry out cytoplasmic transduction, but ML038011a-PA provides intranuclear transduction of mechanical signals. Spatial reconstruction of the studied proteins revealed differences in their structure, which may be related to various functions of these proteins in the cell. The question of which of these proteins is involved in the initiation of luminescence after mechanical stimulation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Himmel N.J., Cox D.N. 2020. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc. Biol. Sci. 287 (1933), 20201309. https://doi.org/10.1098/rspb.2020.1309

    Article  Google Scholar 

  2. Cao E. 2020. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol. 152 (3), e201811998. https://doi.org/10.1085/jgp.201811998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Samanta A., Hughes T.E., Moiseenkova-Bell V.Y. 2018. Transient receptor potential (TRP) channels. Subcell Biochem. 87, 141‒165. https://doi.org/10.1007/978-981-10-7757-9_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nilius B., Owsianik G. 2011. The transient receptor potential family of ion channels. Genome Biol. 12 (3), 218. https://doi.org/10.1186/gb-2011-12-3-218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lehnert B.P., Santiago C., Huey E.L., Emanuel A.J., Renauld S., Africawala N., Alkislar I., Zheng Y., Bai L., Koutsioumpa C., Hong J.T., Magee A.R., Harvey C.D., Ginty D.D.-2021. Mechanoreceptor synapses in the brainstem shape the central representation of touch. Cell. 184 (22), 5608‒5621. https://doi.org/10.1016/j.cell.2021.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robinson C.V., Rohacs T., Hansen S.B. 2019. Tools for understanding nanoscale lipid regulation of ion channels. Trends Biochem. Sci. 44 (9), 795‒806. https://doi.org/10.1016/j.tibs.2019.04.00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang X., Sun L., Liu Z. 2017. Mechanosensory Transduction in Drosophila melanogaster. Singapore: Springer, p. 82. https://doi.org/10.1007/978-981-10-6526-2

  8. Ryan J.F., Pang K., Schnitzler C.E., Nguyen A.D., Moreland R.T., Simmons D.K., Koch B.J., Francis W.R., Havlak P., NISC Comparative Sequencing Program; Smith S.A., Putnam N.H., Haddock S.H., Dunn C.W., Wolfsberg T.G., Mullikin J.C., Martindale M.Q., Baxevanis A.D. 2013. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 342 (6164), 1242592. https://doi.org/10.1126/science.1242592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moroz L.L. 2015. Convergent evolution of neural systems in ctenophores. J. Exp. Biol. 218 (4), 598‒611. https://doi.org/10.1242/jeb.110692

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moroz L.L., Kohn A.B. 2016. Independent origins of neurons and synapses: insights from ctenophores. Philos. Trans. R. Soc., B. 371 (1685), 20150041. https://doi.org/10.1098/rstb.2015.0041

  11. Moroz L.L. 2021. Multiple origins of neurons from secretory cells. Front. Cell Dev. Biol. 9, 669087. https://doi.org/10.3389/fcell.2021.669087

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aronova M.Z. 2009. Structural models of “simple” sense organs by the example of the first Metazoa. J. Evol. Biochem. Phys. 45 (2), 179‒196. https://doi.org/10.1134/S0022093009020017

    Article  Google Scholar 

  13. Jékely G., Godfrey-Smith P., Keijzer F. 2021. Reafference and the origin of the self in early nervous system evolution. Philos. Trans. R. Soc., B. 376 (1821), 20190764. https://doi.org/10.1098/rstb.2019.0764

  14. Bagriantsev S.N., Gracheva E.O., Gallagher P.G. 2014. Piezo proteins: regulators of mechanosensation and other cellular processes. J. Biol. Chem. 289 (46), 31673‒31681. https://doi.org/10.1074/jbc.R114.612697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C., Finn R.D., Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2 (47), W636‒W641. https://doi.org/10.1093/nar/gkz268

    Article  CAS  Google Scholar 

  16. Chevenet F., Brun C., Bañuls A.L., Jacq B., Christen R. 2006. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics. 10 (7), 439. https://doi.org/10.1186/1471-2105-7-439

    Article  CAS  Google Scholar 

  17. Kyte J., Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 (1), 105‒132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  18. Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., Finn R.D., Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49 (D1), D412‒D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed  Google Scholar 

  19. Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. 2021. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 (D1), D605‒D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  20. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10 (6), 845‒858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sayle R.A., Milner-White E.J. 1995. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20 (9), 374‒376. https://doi.org/10.1016/S0968-0004(00)89080-5

    Article  CAS  PubMed  Google Scholar 

  22. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (13), 1605‒1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  23. Jin P., Bulkley D., Guo Y., Zhang W., Guo Z., Huynh W., Wu S., Meltzer S., Cheng T., Jan L.Y., Jan Y.N., Cheng Y. 2017. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature. 547 (7661), 118‒122. https://doi.org/10.1038/nature22981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duan J., Li J., Zeng B., Chen G.L., Peng X., Zhang Y., Wang J., Clapham D.E., Li Z., Zhang J. 2018. Structure of the mouse TRPC4 ion channel. Nat. Commun. 9 (1), 1‒10. https://doi.org/10.1038/s41467-018-05247-9

    Article  CAS  Google Scholar 

  25. Ray A., Lindahl E., Wallner B. 2012. Improved model quality assessment using ProQ2. BMC Bioinf. 13 (1), 1‒12. https://doi.org/10.1186/1471-2105-13-224

    Article  Google Scholar 

  26. Russell S., Norvigb P. 2010. Intelligence Artificielle: Avec Plus de 500 Exercices. Pearson Education, France.

    Google Scholar 

  27. Ward J.J., McGuffin L.J., Bryson K., Buxton B.F., Jones D.T. 2004. The DISOPRED server for the prediction of protein disorder. Bioinformatics. 20 (13), 2138‒2139. https://doi.org/10.1093/bioinformatics/bth195

    Article  CAS  PubMed  Google Scholar 

  28. Jones D.T., Cozzetto D. 2015. DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics. 31 (6), 857‒863. https://doi.org/10.1093/bioinformatics/btu744

    Article  CAS  PubMed  Google Scholar 

  29. Perissinotti P.P., Martínez-Hernández E., Piedras-Rentería E.S. 2021. TRPC1/5-Cav3 complex mediates leptin-induced excitability in hypothalamic neurons. Front. Neurosci. 15, 679078. https://doi.org/10.3389/fnins.2021.679078

    Article  PubMed  PubMed Central  Google Scholar 

  30. Watson R.A. 2006. Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Frame-work of Evolution. Vienna Series in Theoretical Biology: A Bradford Book. ISBN-10: 9780262232432

  31. Oteiza P., Baldwin M.W. 2021. Evolution of sensory systems. Curr. Opin. Neurobiol. 71, 52‒59. https://doi.org/10.1016/j.conb.2021.08.005

    Article  CAS  PubMed  Google Scholar 

  32. Li H. 2017. TRP channel classification. Adv. Exp. Med. Biol. 976, 1‒8. https://doi.org/10.1007/978-94-024-1088-4_1

    Article  CAS  PubMed  Google Scholar 

  33. Hellmich U.A., Gaudet R. 2014. Structural biology of TRP channels. Handb. Exp. Pharmacol. 223, 963‒990. https://doi.org/10.1007/978-3-319-05161-1_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Venkatachalam K., Montell C. 2007. TRP channels. Annu. Rev. Biochem. 76, 387‒417. https://doi.org/10.1146/annurev.biochem.75.103004.142819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voets T. 2012. Quantifying and modeling the temperature-dependent gating of TRP channels. Rev. Physiol. Biochem. Pharmacol. 162, 91‒119. https://doi.org/10.1007/112_2011_5

    Article  CAS  PubMed  Google Scholar 

  36. Coste B., Mathur J., Schmidt M., Earley T.J., Ranade S., Petrus M.J., Dubin A.E., Patapoutian A. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330 (6000), 55‒60. https://doi.org/10.1126/science.1193270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng G., Shi X., Kadowaki T. 2015. Evolution of TRP channels inferred by their classification in diverse animal species. Mol. Phylogenet. Evol. 84, 145‒157. https://doi.org/10.1016/j.ympev.2014.06.016

    Article  CAS  PubMed  Google Scholar 

  38. Voets T., Nilius B. 2003. TRPs make sense. J. Membr. Biol. 192 (1), 1‒8. https://doi.org/10.1007/s00232-002-1059-8

    Article  CAS  PubMed  Google Scholar 

  39. Voets T., Talavera K., Owsianik G., Nilius B. 2005. Sensing with TRP channels, Nat. Chem. Biol. 1 (2), 85‒92. https://doi.org/10.1038/nchembio0705-85

    Article  CAS  PubMed  Google Scholar 

  40. Kadowaki T. 2015. Evolutionary dynamics of metazoan TRP channels. Pflugers Arch. 467 (10), 2043‒2053. https://doi.org/10.1007/s00424-015-1705-5

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.V. Fadeeva and E.V. Sergeeva for help in the work, O.V. Mashukova, B.E. Anninsky, S.A. Tsarin, and O.S. Zav’yalova for support, K.A. Rybakova, V.D. Ratnikov, E.V. Motsar and M.I. Silakov for discussion of the manuscript and recommendation, and also to anonymous reviewers for helpful comments that allowed us to significantly improve the manuscript.

Funding

The work was carried out within the framework of the State Grand for the FRC IBSS, No. 0828-2018-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Vtyurina.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain a description of any research involving humans or highly organized animals as subjects.

Additional information

Abbreviations: a.a., amino acid residues (with a digit); TRP, transient receptor potential; TRPC, (C, canonical); TRPA (A, ankyrin); TRPN (N, no mechanoreceptor potential C); TRPM (M, melastatin); TRPS (S, soromelastatin); TRPV (V, vanilloid), TRPVL (VL, vanilloid-like); TRPML (ML, mucolipin); TRPP (P, polycystic); ANK, ankyrin domain; AR-ankyrin repeat.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.V., Vtyurina, D.N. Spatial Reconstruction of TRPC Mechanoreceptors of the Ctenophore Mnemiopsis leidyi A. Agassiz, 1865. Mol Biol 57, 755–763 (2023). https://doi.org/10.1134/S0026893323040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040106

Keywords:

Navigation