Skip to main content
Log in

Factors Affecting the Stability of the Trimer of 2'-Deoxyuridine 5'-Triphosphate Nucleotide Hydrolase from Escherichia coli

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

2′-Deoxyuridine 5′-triphosphate nucleotide hhydrolase (Dut) hydrolyzes dUTP to dUMP and pyrophosphate to prevent erroneous incorporation of dUMP from the dUTP metabolic pool into DNA. Dut is considered as a promising pharmacological target for antimetabolite therapy. Enzymatically active Dut is a trimer that binds the substrate at the interface between the subunits. High-speed nanoscale differential scanning fluorimetry (nanoDSF) was used to study how various physicochemical factors affect the stability of the Escherichia coli Dut trimer. Unlike with monomeric proteins, thermal unfolding of Dut occurred in two steps, the first one corresponding to dissociation of the trimer into monomeric subunits. Hydrophobic interactions and hydrogen bonds at the interfaces between the subunits were found to contribute most to trimer stabilization. The binding of nucleotide ligands partly stabilized the Dut trimer. In general, nanoDSF is a convenient assay for screening low-molecular-weight compounds for their ability to destabilize the active Dut trimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature. 362, 709–715.

    Article  CAS  PubMed  Google Scholar 

  2. Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., Ellenberger T. 2006. DNA Repair and Mutagenesis.Washington, D.C.: ASM Press.

    Google Scholar 

  3. Berger S.H., Pittman D.L., Wyatt M.D. 2008. Uracil in DNA: consequences for carcinogenesis and chemotherapy. Biochem. Pharmacol. 76, 697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kavli B., Slupphaug G., Krokan H.E. 2021. Genomic uracil in biology, immunity and cancer. In DNA Damage, DNA Repair and Disease. Dizdaroglu, M., Lloyd, R.S., Eds. London: Royal Soc. Chem., pp. 220–248.

    Google Scholar 

  5. Persson R., Cedergren-Zeppezauer E.S., Wilson K.S. 2001. Homotrimeric dUTPases: structural solutions for specific recognition and hydrolysis of dUTP. Curr. Protein Pept. Sci. 2, 287–300.

    Article  CAS  PubMed  Google Scholar 

  6. Vértessy B.G., Tóth J. 2009. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc. Chem. Res. 42, 97–106.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kouzminova E.A., Kuzminov A. 2004. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol. Microbiol. 51, 1279–1295.

    Article  CAS  PubMed  Google Scholar 

  8. Kouzminova E.A., Kuzminov A. 2006. Fragmentation of replicating chromosomes triggered by uracil in DNA. J. Mol. Biol. 355, 20–33.

    Article  CAS  PubMed  Google Scholar 

  9. Ting H., Kouzminova E.A., Kuzminov A. 2008. Synthetic lethality with the dut defect in Escherichia coli reveals layers of DNA damage of increasing complexity due to uracil incorporation. J. Bacteriol. 190, 5841–5854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pálinkás H.L., Rácz G.A., Gál Z., Hoffmann O.I., Tihanyi G., Róna G., Gócza E., Hiripi L., Vértessy B.G. 2019. CRISPR/Cas9-mediated knock-out of dUTPase in mice leads to early embryonic lethality. Biomolecules. 9, 136.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cedergren-Zeppezauer E.S., Larsson G., Nyman P.O., Dauter Z., Wilson K.S. 1992. Crystal structure of a dUTPase. Nature. 355, 740–743.

    Article  CAS  PubMed  Google Scholar 

  12. Larsson G., Svensson L.A., Nyman P.O. 1996. Crystal structure of the Escherichia coli dUTPase in complex with a substrate analogue (dUDP). Nat. Struct. Biol. 3, 532–538.

    Article  CAS  PubMed  Google Scholar 

  13. Mol C.D., Harris J.M., McIntosh E.M., Tainer J.A. 1996. Human dUTP pyrophosphatase: uracil recognition by a β hairpin and active sites formed by three separate subunits. Structure. 4, 1077–1092.

    Article  CAS  PubMed  Google Scholar 

  14. González A., Larsson G., Persson R., Cedergren-Zeppezauer E. 2001. Atomic resolution structure of Escherichia coli dUTPase determined ab initio. Acta Crystallogr. D Biol. Crystallogr. 57, 767–774.

    Article  PubMed  Google Scholar 

  15. Barabás O., Pongrácz V., Kovári J., Wilmanns M., Vértessy B.G. 2004. Structural insights into the catalytic mechanism of phosphate ester hydrolysis by dUTPase. J. Biol. Chem. 279, 42907–42915.

    Article  PubMed  Google Scholar 

  16. Varga B., Barabás O., Kovári J., Tóth J., Hunyadi-Gulyás É., Klement É., Medzihradszky K.F., Tölgyesi F., Fidy J., Vértessy B.G. 2007. Active site closure facilitates juxtaposition of reactant atoms for initiation of catalysis by human dUTPase. FEBS Lett. 581, 4783–4788.

    Article  CAS  PubMed  Google Scholar 

  17. Kovári J., Barabás O., Varga B., Békési A., Tölgyesi F., Fidy J., Nagy J., Vértessy B.G. 2008. Methylene substitution at the α–β bridging position within the phosphate chain of dUDP profoundly perturbs ligand accommodation into the dUTPase active site. Proteins. 71, 308–319.

    Article  PubMed  Google Scholar 

  18. Benedek A., Temesváry-Kis F., Khatanbaatar T., Leveles I., Surányi É.V., Szabó J.E., Wunderlich L., Vértessy B.G. 2019. The role of a key amino acid position in species-specific proteinaceous dUTPase inhibition. Biomolecules. 9, 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larsson G., Nyman P.O., Kvassman J.-O. 1996. Kinetic characterization of dUTPase from Escherichia coli. J. Biol. Chem. 271, 24010–24016.

    Article  CAS  PubMed  Google Scholar 

  20. Mustafi D., Bekesi A., Vertessy B.G., Makinen M.W. 2003. Catalytic and structural role of the metal ion in dUTP pyrophosphatase. Proc. Natl Acad. Sci. U. S. A. 100, 5670–5675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fiser A., Vértessy B.G. 2000. Altered subunit communication in subfamilies of trimeric dUTPases. Biochem. Biophys. Res. Commun. 279, 534–542.

    Article  CAS  PubMed  Google Scholar 

  22. Arkin M.R., Wells J.A. 2004. Small-molecule inhibitors of protein–protein interactions: Progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317.

    Article  CAS  PubMed  Google Scholar 

  23. Petta I., Lievens S., Libert C., Tavernier J., De Bosscher K. 2016. Modulation of protein–protein interactions for the development of novel therapeutics. Mol. Ther. 24, 707–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Senisterra G., Chau I., Vedadi M. 2012. Thermal denaturation assays in chemical biology. Assay Drug Dev. Technol. 10, 128–136.

    Article  CAS  PubMed  Google Scholar 

  25. Magnusson A.O., Szekrenyi A., Joosten H.-J., Finnigan J., Charnock S., Fessner W.-D. 2019. nanoDSF as screening tool for enzyme libraries and biotechnology development. FEBS J. 286, 184–204.

    Article  CAS  PubMed  Google Scholar 

  26. Kotov V., Mlynek G., Vesper O., Pletzer M., Wald J., Teixeira-Duarte C.M., Celia H., Garcia-Alai M., Nussberger S., Buchanan S.K., Morais-Cabral J.H., Loew C., Djinovic-Carugo K., Marlovits T.C. 2021. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci. 30, 201–217.

    Article  CAS  PubMed  Google Scholar 

  27. Eftink M.R. 1994. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66, 482–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krissinel E., Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.

    Article  CAS  PubMed  Google Scholar 

  29. Fraczkiewicz R., Braun W. 1998. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333.

    Article  CAS  Google Scholar 

  30. Vivian J.T., Callis P.R. 2001. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoshikawa H., Hirano A., Arakawa T., Shiraki K. 2012. Effects of alcohol on the solubility and structure of native and disulfide-modified bovine serum albumin. Int. J. Biol. Macromol. 50, 1286–1291.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

DNA sequencing was performed at the Siberian Branch of the Russian Academy of Sciences Genomics Core Facility.

Funding

This work was supported by the Strategic academic leadership program of Tomsk State University (Priority-2030). Structural analysis was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-263).

Author information

Authors and Affiliations

Authors

Contributions

A. V. Yudkina and E. A. Kovalenko contributed equally to this work.

Corresponding authors

Correspondence to E. A. Kovalenko or D. O. Zharkov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudkina, A.V., Kovalenko, E.A., Endutkin, A.V. et al. Factors Affecting the Stability of the Trimer of 2'-Deoxyuridine 5'-Triphosphate Nucleotide Hydrolase from Escherichia coli. Mol Biol 57, 312–319 (2023). https://doi.org/10.1134/S002689332302022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332302022X

Keywords:

Navigation