Skip to main content
Log in

Reduced Expression of the Tissue-Specific Oct-1L Isoform Exerts an Antitumor Effect on Namalwa Burkitt’s Lymphoma Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Increased expression levels of the Oct-1 transcription factor is considered to be one of the key markers of poor cancer prognosis. In addition to the ubiquitous Oct-1А isoform, which is found in all cells, there also exists a tissue-specific Oct-1L isoform, which is expressed in hematopoietic cells. Oct-1L increases cell resistance to different stresses and also regulates the expression of genes controlling differentiation of hematopoietic and immune system cells. The tissue-specific Oct-1L isoform levels are significantly increased in the B-cell lymphoblastoma Namalwa and Raji lines and the T-cell lymphoblastoma Jurkat line compared to normal B and T cells. Apparently, aberrant Oct-1L overexpression not only enhances stress resistance but also leads to the disruption of developmental pathways in the cells promoting their malignant transformation. We report here that targeted suppression of the tissue-specific Oct-1L isoform expression reduces the proliferation rate of Namalwa B-lymphoblastic Burkitt’s lymphoma cells, significantly increases cell death rate under hypoxic conditions, and makes cells more sensitive to chemotherapeutic agents such as docetaxel and doxorubicin. These results indicate that targeted therapy aimed at the suppression of the Oct-1 isoforms with increased expression levels in tumor cells rather than the total Oct-1, thus avoiding the traumatic effects of total Oct-1 knockdown, may be promising. Selective suppression of Oct-1 isoforms is a promising strategy in the treatment of lymphoid tumors and may contribute to mitigating the disease course and increasing survival rates in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sytina E.V., Pankratova E.V. 2003. Transcription factor Oct-1: plasticity and multiplicity of functions. Mol. Biol. (Moscow). 37, 637–648.

    Article  CAS  Google Scholar 

  2. Shakya A., Goren A., Shalek A., German C.N., Snook J., Kuchroo V.K., Yosef N., Chan R.C., Regev A., Williams M.A., Tantin D. 2015. Oct1 and OCA-B are selectively required for CD4 memory T cell function. J. Exp. Med. 212, 2115–2131.

    Article  CAS  Google Scholar 

  3. Pankratova E.V., Stepchenko A.G., Krylova I.D., Portseva TN., Georgieva S.G. 2018. The regulatory interplay between Oct-1 isoforms contributes to hematopoiesis and the isoforms imbalance correlates with a malignant transformation of B cells. Oncotarget. 9, 29892‒29905.

    Article  Google Scholar 

  4. Pankratova E.V., Stepchenko A.G., Portseva T., Mogila V.A., Georgieva S.G. 2016. Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt’s lymphoma cells affect a wide range of cellular processes. Nucleic Acids Res. 44, 9218‒9230.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maddox J., Shakya A., South S., Shelton D., Andersen J.N., Chidester S., Kang J., Gligorich K.M., Jones D.A., Spangrude G.J., Welm B.E., Tantin D. 2012. Transcription factor Oct1 is a somatic and cancer stem cell determinant. PLoS Genet. 8, e1003048.

    Article  CAS  Google Scholar 

  6. Wang P., Jin T. 2010. Oct-1 functions as a sensor for metabolic and stress signals. Islets. 2, 46‒48.

    Article  CAS  Google Scholar 

  7. Qian J., Kong X., Deng N., Tan P., Chen H., Wang J., Li Z., Hu Y., Zou W., Xu J., Fang J.-Y. 2015. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut. 64, 37‒48.

    Article  CAS  Google Scholar 

  8. Almeida R., Almeida J., Shoshkes M., Mendes N., Mesquita P., Silva E., Van Seuningen I., Reis C.A., Santos-Silva F., David L. 2005. OCT-1 is over-expressed in intestinal metaplasia and intestinal gastric carcinomas and binds to, but does not transactivate, CDX2 in gastric cells. J. Pathol. 207, 396‒401.

    Article  CAS  Google Scholar 

  9. Jeong S.H., Lee Y.J., Cho B.I., Ha W.-S., Choi S.-K., Jung E.-J., Ju Y.-T., Jeong C.-Y., Ko G.H., Yoo J., Hong S.-C. 2014. OCT-1 overexpression is associated with poor prognosis in patients with well-differentiated gastric cancer. Tumour Biol. 35, 5501‒5509.

    Article  CAS  Google Scholar 

  10. Obinata D., Takayama K., Urano T., Murata T., Kumagai J., Fujimura T., Ikeda K., Horie-Inoue K., Homma Y., Ouchi Y., Takahashi S., Inoue S. 2012. Oct1 regulates cell growth of LNCaP cells and is a prognostic factor for prostate cancer. Int. J. Cancer. 130, 1021‒1028.

    Article  CAS  Google Scholar 

  11. Xiao S., Liao S., Zhou Y., Jiang B., Li Y., Xue M. 2014. High expression of octamer transcription factor 1 in cervical cancer. Oncol Lett. 7, 1889‒1894.

    Article  CAS  Google Scholar 

  12. Kuzmanov A., Johansen P., Hofbauer G. 2020. FBXO25 promotes cutaneous squamous cell carcinoma growth and metastasis through cyclin D1. J. Invest. Dermatol. 140, 2496‒2504.

    Article  CAS  Google Scholar 

  13. Wang Y.P., Song G.H., Chen J., Xiao C., Li C., Zhong L., Sun X., Wang Z.-W., Deng G.-L., Yu F.-D., Xue Y.-M., Tang H.-M., Peng Z.-H., Wang X.-L. 2016. Elevated OCT1 participates in colon tumorigenesis and independently predicts poor prognoses of colorectal cancer patients. Tumour Biol. 37, 3247‒3255.

    Article  CAS  Google Scholar 

  14. Hwang-Verslues W.W., Chang P.H., Jeng Y.M., Kuo W.-H., Chiang P.-H., Chang Y.-C., Hsieh T.-H., Su F.-Y., Lin L.-C., Abbondante S., Yang C.-Y., Hsu H.-M., Yu J.-C., Chang K.-J., Shew J.-Y., Lee E.Y.-H.P., Lee W.-H. 2013. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy. Proc. Natl. Acad. Sci. U. S. A. 110, 12331‒12336.

    Article  CAS  Google Scholar 

  15. Sharpe D.J., Orr K.S., Moran M., White S.J., McQuaid S., Lappin T.R., Thompson A., James J.A. 2014. POU2F1 activity regulates HOXD10 and HOXD11 promoting a proliferative and invasive phenotype in head and neck cancer. Oncotarget. 5, 8803‒8815.

    Article  Google Scholar 

  16. Luchina N.N., Krivega I.V., Pankratova E.V. 2003. Human Oct-1L isoform has tissue-specific expression pattern similar to Oct-2. Immunol. Lett. 85, 237‒241.

    Article  CAS  Google Scholar 

  17. Stepchenko A.G., Portseva T.N., Glukhov I.A., Kotnova A.P., Georgieva S.G., Pankratova E.V. 2021. Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Sci. Rep. 11, 18808.

    Article  CAS  Google Scholar 

  18. Stepchenko A.G., Lyanova B.M., Krylova I.D., Ilyin Y.V., Georgieva S.G., Pankratova E.V. 2018. Differentiation of monocytic cells is accompanied by a change in the expression of the set of Oct-1 isoforms. Dokl. Biochem. Biophys. 483, 306‒308.

    Article  CAS  Google Scholar 

  19. Stepchenko A.G. 1992. The nucleotide sequence of mouse OCT-1 cDNA. Nucleic Acids Res. 20, 1419.

    Article  CAS  Google Scholar 

  20. Pankratova E.V., Deyev I.E., Zhenilo S.V., Polanovsky O.L. 2001. Tissue-specific isoforms of the ubiquitous transcription factor Oct-1. Mol. Genet. Genomics. 266, 239‒245.

    Article  CAS  Google Scholar 

  21. Pankratova E.V., Portseva T.N., Makarova A.A., Lyanova B.M., Georgieva S.G., Stepchenko A.G. 2021. POU2F1 (Oct-1) differently autoregulates the alternative promoters of its own gene by binding to different regulatory sites. Mol. Biol. (Moscow). 55, 854–862.

    Article  CAS  Google Scholar 

  22. Krylova I.D., Portseva T.N., Georgieva S.G., Stepchenko A.G., Pankratova E.V. 2013. New mRNA isoform of Oct-1 transcription factor is transcribed from alternative promoter. Mol. Biol. (Moscow). 47, 552–558.

    Article  CAS  Google Scholar 

  23. Stepchenko A.G., Georgieva S.G., Pankratova E.V. 2019. Multiple interactions of the Oct-1 (POU2F1) transcription factor with PORE and MORE sites. Mol. Biol. (Moscow). 53, 379–383.

    Article  CAS  Google Scholar 

  24. Pankratova E., Sytina E., Polanovsky O. 2006. Autoregulation of Oct-1 gene expression is mediated by two octa-sites in alternative promoter. Biochimie. 88, 1323‒1329.

    Article  CAS  Google Scholar 

  25. Stepchenko A.G., Pankratova E.V., Doronin S.A., Gulag P.V., Georgieva S.G. 2011. The alternative protein isoform NK2B, encoded by the vnd/NK-2 proneural gene, directly activates transcription and is expressed following the start of cells differentiation. Nucleic Acids Res. 39, 5401‒5411.

    Article  CAS  Google Scholar 

  26. García-Cosío M., Santón A., Martín P., Camarasa N., Montalbán C., García J.F., Bellas C. 2004 Analysis of transcription factor OCT.1, OCT.2 and BOB.1 expression using tissue arrays in classical Hodgkin’s lymphoma. Mod. Pathol. 17, 1531‒1538.

    Article  Google Scholar 

  27. Jafek J.L., Shakya A., Tai P.Y., Ibarra A., Kim H., Maddox J., Chumley J., Spangrude G.J., Miles R.R., Kelley T.W., Tantin D. 2019. Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp. Hematol. 76, 38‒48. e2.

  28. Gouveia G.R., Ferreira S.C., Siqueira S.A.C., de Pádua Covas Lage L.A., Hallack Neto A.E., de Oli-veira Costa R., Pereira J. 2020. Overexpression of OCT-1 gene is a biomarker of adverse prognosis for diffuse large B-cell lymphoma (DLBCL): data from a retrospective cohort of 77 Brazilian patients. BMC Cancer. 20, 1041.

    Article  CAS  Google Scholar 

  29. Dey A., Sen S., Uversky V.N., Maulik U. 2021. Structural facets of POU2F1 in light of the functional annotations and sequence-structure patterns. J. Biomol. Struct. Dyn. 39, 1093‒1105.

    Article  CAS  Google Scholar 

  30. Matthias P. 1998. Lymphoid-specific transcription mediated by the conserved octamer site: who is doing what? Semin Immunol. 10, 155‒163.

    Article  CAS  Google Scholar 

  31. Kim E.C., Edmonston C.R., Wu X., Schaffer A., Casali P. 2004. The HoxC4 homeodomain protein mediates activation of the immunoglobulin heavy chain 3' hs1,2 enhancer in human B cells. Relevance to class switch DNA recombination. J. Biol. Chem. 279, 42258–42269.

    Article  CAS  Google Scholar 

  32. Hwang S.S., Kim L.K., Lee G.R., Flavell R.A. 2016. Role of OCT-1 and partner proteins in T cell differentiation. Biochim. Biophys. Acta. 1859, 825‒831.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 19-14-00365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pankratova.

Ethics declarations

The authors declare no conflicts of interest. No experimentation involving animals or humans was carried out by any of the authors.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portseva, T.N., Kotnova, A.P., Bulavkina, E.V. et al. Reduced Expression of the Tissue-Specific Oct-1L Isoform Exerts an Antitumor Effect on Namalwa Burkitt’s Lymphoma Cells. Mol Biol 56, 551–558 (2022). https://doi.org/10.1134/S0026893322040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322040094

Keywords:

Navigation