Skip to main content
Log in

Prevalence, Diversity, and Evolution of L18 (DD37E) Transposons in the Genomes of Cnidarians

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Transposable elements have a significant impact on the structure and functioning of multicellular genomes, and also serve as a source of new genes. Studying the diversity and evolution of transposable elements in different taxa is necessary for the fundamental understanding of their role in genomes. The Tc1/mariner elements are one of the most widespread and diverse groups of DNA transposons. In this work, the structure, distribution, diversity, and evolution of the L18 (DD37E) elements in the genomes of cnidarians (Cnidaria) were studied for the first time. As a result, it was found that the L18 group is an independent family (and not a subfamily of the TLE family, as previously thought) in the Tc1/mariner superfamily. Of the 51 detected elements, only four had potentially functional copies. It is assumed that the L18 transposons are of ancient origin, and, in addition, the elements found in the genomes of organisms of the Anthozoa and Hydrozoa classes do not come from a common ancestral transposon within the Cnidaria phylum. In organisms of the Hydrozoa class, L18 transposons appeared as a result of horizontal transfer at a later time period. An intraspecies comparison of the diversity of the L18 elements demonstrates high homogeneity with respect to “old” transposons, which have already lost their activity. At the same time, distant populations, as in the case of Hydra viridissima, have differences in the representation of DNA transposons and the number of copies. These data supplement the knowledge on the diversity and evolution of Tc1/mariner transposons and contribute to the study of the influence of mobile genetic elements on the evolution of multicellular organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arkhipova I.R., Yushenova I.A. 2019. Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol. 11, 906–918. https://doi.org/10.1093/gbe/evz041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvak Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. 2018. Ten things you should know about transposable elements. Genome Biol. 19, 199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gao B., Shen D., Xue S., Chen C., Cui H., Song C. 2016. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. 7, 1–16. https://doi.org/10.1186/s13100-016-0059-7

    Article  Google Scholar 

  4. Petrov D.A. 2001. Evolution of genome size: New approaches to an old problem. Trends Genet. 17, 23–28. https://doi.org/10.1016/S0168-9525(00)02157-0

    Article  CAS  PubMed  Google Scholar 

  5. Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. 2017. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161–177. https://doi.org/10.1093/gbe/evw264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casacuberta E., González J. 2013. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517. https://doi.org/10.1111/mec.12170

    Article  CAS  PubMed  Google Scholar 

  7. Sultana T., Zamborlini A., Cristofari G., Lesage P. 2017. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308.

    Article  CAS  Google Scholar 

  8. Blumenstiel J.P. 2019. Birth, school, work, death, and resurrection: The life stages and dynamics of transposable element proliferation. Genes (Basel). 10, 336. https://doi.org/10.3390/genes10050336

    Article  CAS  PubMed Central  Google Scholar 

  9. Venner S., Feschotte C., Biémont C. 2009. Dynamics of transposable elements: Towards a community ecology of the genome. Trends Genet. 25, 317–323.

    Article  CAS  Google Scholar 

  10. Robillard É., Rouzic A.L., Zhang Z., Capy P., Hua-Van A. 2016. Experimental evolution reveals hyperparasitic interactions among transposable elements. Proc. Natl. Acad. Sci. U. S. A. 113, 14763–14768.

    Article  CAS  Google Scholar 

  11. Sienski G., Dönertas D., Brennecke J. 2012. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 151, 964–980. https://doi.org/10.1016/j.cell.2012.10.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G.J. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 128, 1089–1103. https://doi.org/10.1016/j.cell.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  13. Teixeira F.K., Okuniewska M., Malone C.D., Coux R.X., Rio D.C., Lehmann R. 2017. piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature. 552, 268–272. https://doi.org/10.1038/nature25018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casacuberta E. 2017. Drosophila: Retrotransposons making up telomeres. Viruses. 9, 192. https://doi.org/10.3390/v9070192

    Article  CAS  PubMed Central  Google Scholar 

  15. Belfort M., Curcio M.J., Lue N.F. 2011. Telomerase and retrotransposons: Reverse transcriptases that shaped genomes. Proc. Natl. Acad. Sci. U. S. A. 108, 20304–20310.

    Article  CAS  Google Scholar 

  16. Fulcher N., Derboven E., Valuchova S., Riha K. 2014. If the cap fits, wear it: An overview of telomeric structures over evolution. Cell. Mol. Life Sci. 71, 847–865.

    Article  CAS  Google Scholar 

  17. Casola C., Hucks D., Feschotte C. 2007. Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol. Biol. Evol. 25, 29–41.

    Article  Google Scholar 

  18. Kursel L.E., Malik H.S. 2016. Centromeres. Curr. Biol. 26, 487–490.

    Article  Google Scholar 

  19. Cheresiz S.V., Yurchenko N.N., Ivannikov A.V., Zakharov I.K. 2008. Mobile elements and stress. Inform. Vestn. VOGiS. 12, 217–242.

    Google Scholar 

  20. Kojima K.K. 2020. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94, 233–252. https://doi.org/10.1266/ggs.18-00024

    Article  CAS  PubMed  Google Scholar 

  21. Kapitonov V.V., Jurka J. 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9, 411–412. https://doi.org/10.1038/nrg2165-c1

    Article  PubMed  Google Scholar 

  22. Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982. https://doi.org/10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  23. Yuan Y.W., Wessler S.R. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl. Acad. Sci. U. S. A. 108, 7884–7889.

    Article  CAS  Google Scholar 

  24. Feschotte C., Pritham E.J. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368.

    Article  CAS  Google Scholar 

  25. Muñoz-López M., García-Pérez J.L. 2010. DNA transposons: Nature and applications in genomics. Curr. Genomics. 11, 115–128. https://doi.org/10.2174/138920210790886871

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tellier M., Bouuaert C.C., Chalmers R. 2015. Mariner and the ITm superfamily of transposons. Microbiol. Spectr. 3, MDNA3-0033-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

  27. Wang S., Diaby M., Puzakov M., Ullah N., Wang Y., Danley P., Chen C., Wang X., Gao B., Song C. 2021. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol. Phylogenet. Evol. 161, 107143. https://doi.org/10.1016/j.ympev.2021.107143

    Article  PubMed  Google Scholar 

  28. Dupeyron M., Baril T., Bass C., Hayward A. 2020. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. https://doi.org/10.1186/s13100-020-00212-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ivics Z., Izsvák Z. 2015. Sleeping Beauty transposition. Microbiol. Spectr. 3, MDNA3-0042-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0042-2014

  30. Ivics Z., Hackett P.B., Plasterk R.H., Izsvak Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells Cell. 91, 501–510. https://doi.org/10.1016/S0092-8674(00)80436-5

    Article  CAS  PubMed  Google Scholar 

  31. Plasterk R.H., Izsvak Z., Ivics Z. 1999. Resident aliens: The Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332. https://doi.org/10.1016/S0168-9525(99)01777-1

    Article  CAS  PubMed  Google Scholar 

  32. Shao H., Tu Z. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159, 1103–1115.

    Article  CAS  Google Scholar 

  33. Zhang H.H., Shen Y.H., Xiong X.M., Han M.J., Zhang X.G. 2016. Identification and evolutionary history of the DD41D transposons in insect. Genes Genom. 38, 109–117.

    Article  CAS  Google Scholar 

  34. Shen D., Gao B., Miskey C., Chen C., Sang Y., Zong W., Wang S., Wang Y., Wang X., Ivics Z., Song C. 2020. Multiple invasions of Visitor, a DD41D family of Tc1/mariner transposons, throughout the evolution of vertebrates. Genome Biol. Evol. 12, 1060–1073. https://doi.org/10.1093/gbe/evaa135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2018. An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster, Crassostrea gigas. J. Mol. Evol. 86, 566–580. https://doi.org/10.1007/s00239-018-9868-2

    Article  CAS  PubMed  Google Scholar 

  36. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buchan D.W.A., Jones D.T. 2019. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47, 402–407. https://doi.org/10.1093/nar/gkz297

    Article  CAS  Google Scholar 

  38. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.

    Article  CAS  Google Scholar 

  39. Jacobson J.W., Medhora M.M., Hartl D.L. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 83, 8684–8688.

    Article  CAS  Google Scholar 

  40. Puzakov M.V., Puzakova L.V., Cheresiz S.V., Sang Y. 2021. The IS630/Tc1/mariner transposons in three Ctenophore genomes. Mol. Phylogenet. Evol. 163, 107231. https://doi.org/10.1016/j.ympev.2021.107231

    Article  PubMed  Google Scholar 

  41. Langin T., Capy P., Daboussi M.J. 1995. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol. Gen. Genet. 246, 19–28.

    Article  CAS  Google Scholar 

  42. Clark K.J., Carlson D.F., Leaver M.J., Foster L.K., Fahrenkrug S.C. 2009. Passport, anative Tc1 transposon from flatfish, is functionally active in vertebrate cells. Nucleic Acids Res. 37, 1239–1247.

    Article  CAS  Google Scholar 

  43. Emmons S.W., Yesner L., Ruan K., Katzenberg D. 1983. Evidence for a transposon in Caenorhabditis elegans. Cell. 32, 55–65.

    Article  CAS  Google Scholar 

  44. Franz G., Savakis C. 1991. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 19, 6646.

    Article  CAS  Google Scholar 

  45. Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2020. The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol. Genet. Genomics. 295, 621–633.

    Article  CAS  Google Scholar 

  46. Zong W., Gao B., Diaby M., Shen D., Wang S., Wang Y., Sang Y., Chen C., Wang X., Song C. 2020. Traveler, a new DD35E family of Tc1/mariner transposons, invaded vertebrates very recently. Genome Biol. Evol. 12, 66–76.

    Article  CAS  Google Scholar 

  47. Sang Y., Gao B., Diaby M., Zong W., Chen C., Shen D., Wang S., Wang Y., Ivics Z., Song C. 2019. Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mobile DNA. 10, 45.

    Article  Google Scholar 

  48. Gao B., Zong W., Miskey C., Ullah N., Diaby M., Chen C., Wang X., Ivics Z., Song C. 2020. Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mobile DNA. 11, 32.

    Article  CAS  Google Scholar 

  49. Zhang H.H., Li G.Y., Xiong X.M., Han M.J., Zhang X.G., Dai F.Y. 2016. TRT, a vertebrate and protozoan Tc1-like transposon: Current activity and horizontal transfer. Genome Biol. Evol. 8, 2994–3005.

    Article  CAS  Google Scholar 

  50. Schaack S., Gilbert C., Feschotte C. 2010. Promiscuous DNA: Horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol. 25, 537–546.

    Article  Google Scholar 

  51. Filee J., Rouault J.-D., Harry M., Hua-Van A. 2015. Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus. BMC Genomics. 16, 1061. https://doi.org/10.1186/s12864-015-2060-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanllorente O., Vela J., Mora P., Ruiz-Mena A., Torres M.I., Lorite P., Palomeque T., (2020. Complex evolutionary history of mboumar, a mariner element widely represented in ant genomes. Sci. Rept. 10, 2610. https://doi.org/10.1038/s41598-020-59422-4

    Article  CAS  Google Scholar 

  53. Maruyama K., Hartl D.L. 1991. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J. Mol. Evol. 33, 514–524. https://doi.org/10.1007/BF02102804

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was carried out within the state task of the Federal Research Center of the InBYuM “Functional, metabolic and toxicological aspects of the existence of hydrobionts and their populations in biotopes with different physicochemical regimes”, state registration no. 121041400077-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Puzakov.

Ethics declarations

Conflict of interests. The authors declare no conflicts of interests.

This article does not contain studies using animals as subjects.

Additional information

Translated by N. Onishchenko

Abbreviations: MGE, mobile genetic elements; TIRs, terminal inverted repeats; SIP, sub-end higher inverted repeats; TLE, Tc1-like elements; MLE, mariner-like elements; ORF, open reading frame; aa, amino acid residue at the digit; myr, millions of years ago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakov, M.V., Puzakova, L.V. Prevalence, Diversity, and Evolution of L18 (DD37E) Transposons in the Genomes of Cnidarians. Mol Biol 56, 424–436 (2022). https://doi.org/10.1134/S0026893322030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322030104

Keywords:

Navigation