Skip to main content
Log in

New Method for Evaluating the Substrate Efficiency of Modified Deoxynucleoside Triphosphates for Selex

  • METHODS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A new method for evaluating the substrate efficiency of deoxynucleoside triphosphates containing functional groups for the selection of modified aptamers (mod-SELEX) is proposed. The method involves conducting three consecutive rounds of PCR with a combinatorial library and a modified dNTP candidate for mod-SELEX. The conclusion about the applicability of a specific dNTP derivative is made by the nature of the change in the amplification curve during the three rounds of PCR in real time and does not require SELEX rounds. If the library degenerates during amplification (becomes less representative), it means that the specific modification of dNTP cannot be used with the selected polymerase and the other selected library amplification conditions, since it leads to competitive amplification. When the nature of the signal accumulation curve does not change, it is concluded that the modified triphosphate does not affect the distribution of oligonucleotides with different sequences in the library, that is, it does not lead to a change in its composition from the point of view of the applied detection method. It is these derivatives that can be applied with the selected conditions for the selection of aptamers. The method is applicable for quick assessment of the substrate suitability of modifications introduced into deoxynucleoside triphosphates for mod-SELEX and will be useful in the selection of aptamers for clinical diagnostics, medicine and scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Rohloff J.C., Gelinas A.D., Jarvis T.C., Ochsner U.A., Schneider D.J., Gold L., Janjic N. 2014. Nucleic acid ligands with protein-like side chains: Modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucl. Acids. 3, e201.

    Article  CAS  Google Scholar 

  2. Lapa S.A., Pavlov A.S., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Rad’ko S.P., Zasedatelev A.S., Lisitsa A.V., Chudinov A.V. 2019. Enzymatic preparation of modified DNA: Study of the kinetics by real-time PCR. Mol. Biol. (Moscow). 53, 460–469.

    Article  CAS  Google Scholar 

  3. Tolle F., Wilke J., Wengel J., Mayer G. 2014. By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PLoS One. 9, e114693.

    Article  Google Scholar 

  4. Shao K., Shi X., Zhu X., Cui L., Shao Q., Ma D. 2017. Construction and optimization of an efficient amplification method of a random ssDNA library by asymmetric emulsion PCR. Biotechnol. Appl. Biochem. 64, 239–243.

    Article  CAS  Google Scholar 

  5. Schütze T., Wilhelm B., Greiner N., Braun H., Peter F., Mörl M., Erdmann V.A., Lehrach H., Konthur Z., Menger M., Arndt P.F., Glökler J. 2011. Probing the SELEX process with next-generation sequencing. PLoS One. 6, e29604.

    Article  Google Scholar 

  6. Kolm C., Cervenka I., Aschl U.J., Baumann N., Jakwerth S., Krska R., Mach R.L., Sommer R., DeRosa M.C., Kirschner A.K.T., Farnleitner A.H., Reischer G.H. 2020. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci. Rept. 10, 20917.

    Article  CAS  Google Scholar 

  7. Luo Z., He L., Wang J., Fang X., Zhang L. 2017. Developing a combined strategy for monitoring the progress of aptamer selection. Analyst. 142, 3136–3139.

    Article  CAS  Google Scholar 

  8. Sanchez J.C., Zhang L., Evoli S., Schnicker N.J., Nunez-Hernandez M., Yu L., Wereszczynski J., Pufall M.A., Musselman C.A. 2020. The molecular basis of selective DNA binding by the BRG1 AT-hook and bromodomain. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194566.

    Article  CAS  Google Scholar 

  9. Amano R., Aoki K., Miyakawa S., Nakamura Y., Kozu T., Kawai G., Sakamoto T. 2017. NMR monitoring of the SELEX process to confirm enrichment of structured RNA. Sci. Rep. 7, 283.

    Article  Google Scholar 

  10. Müller J., El-Maarri O., Oldenburg J., Pötzsch B., Mayer G. 2008. Monitoring the progression of the in vitro selection of nucleic acid aptamers by denaturing high-performance liquid chromatography. Anal. Bioanal. Chem. 390, 1033–1037.

    Article  Google Scholar 

  11. Thevendran R., Citartan M. 2022. Assays to estimate the binding affinity of aptamers. Talanta. 238, 122971.

    Article  CAS  Google Scholar 

  12. Gooch J., Tungsirisurp S., Costanzo H., Napier R., Frascione N. 2021. Generating aptamers towards human sperm cells using massively parallel sequencing. Anal. Bioanal. Chem. 413, 5821–5834.

    Article  CAS  Google Scholar 

  13. Chudinov A.V., Shershov V.E., Pavlov A.S., Volkova O.S., Kuznetsova V.E., Zasedatelev A.S., Lapa S.A. 2020. Simultaneous incorporation of modified dU and dC derivatives in the growing DNA chain using PEX and PCR. Russ. J. ioorg. Chem. 46 (5) 856–858.

    Article  CAS  Google Scholar 

  14. Lapa S.A., Volkova O.S., Kuznetsova V.E., Zasedatelev A.S., Chudinov A.V. 2022. A study of multiple enzymatic incorporation of modified purine and pyrimidine nucleotides in the growing DNA chain. Mol. Biol. (Moscow). 56, 157–167.

    Article  CAS  Google Scholar 

  15. Rahimizadeh K., Al Shamaileh H., Fratini M., Chakravarthy M., Stephen M., Shigdar S., Veedu R.N. 2017. Development of cell-specific aptamers: Recent advances and insight into the selection procedures. Molecules. 22, 2070.

    Article  Google Scholar 

  16. Sefah K., Shangguan D., Xiong X., O’Donoghue M.B., Tan W. 2010. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5, 1169–1185.

    Article  CAS  Google Scholar 

  17. Chudinov A.V., Kiseleva Ya.Yu., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Lapa S.A., Timofeev E.N., Archakov A.I., Lisitsa A.V., Rad’ko S.P., Zasedatelev A.S. 2017. Structural and functional analysis of biopolymers and their complexes: Enzymatic synthesis of high-modified DNA. Mol. Biol. (Moscow). 51, 474–483.

    Article  CAS  Google Scholar 

  18. Lapa S.A., Romashova K.S., Spitsyn M.A., Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedate-leva O.A., Radko S.P., Timofeev E.N., Lisitsa A.V., Chudinov A.V. 2018. Preparation of modified combinatorial DNA libraries via emulsion PCR with subsequent strand separation. Mol. Biol. (Moscow). 52, 854–864.

    Article  CAS  Google Scholar 

  19. Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. 2003. Assumption-free analysis of quantitative realtime polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.

    Article  CAS  Google Scholar 

  20. Radko S.P., Lapa S.A., Chudinov A.V., Khmeleva S.A., Mannanova M.M., Kurbatov L.K., Kiseleva Ya.Yu., Zasedatelev A.S., Lisitsa A.V. 2019. Evaluation of the diversity of random DNA-libraries by the shape of amplification curves for estimation of the efficiency of aptamer selection. Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem. 14 (2), 159–167.

    Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Foundation for Basic Research (no. 18-29-09151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lapa.

Ethics declarations

Conflict of interests. The authors declare they have no conflicts of interest.

This article does not contain any research involving humans and animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, S.A., Antipova, O.S. & Chudinov, A.V. New Method for Evaluating the Substrate Efficiency of Modified Deoxynucleoside Triphosphates for Selex. Mol Biol 56, 489–494 (2022). https://doi.org/10.1134/S0026893322030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322030086

Keywords:

Navigation