Skip to main content
Log in

Protocol of Transcriptome Analysis of Decidual Placenta Cells

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The advent of high-throughput sequencing technologies has expanded our understanding of the biological significance of non-coding regions of the genome. In recent years, more and more studies have been devoted to studying the role of noncoding RNAs in the development of diseases, as well as their participation in various cellular processes. Until now, all transcriptome studies of native placental tissue with the description of the noncoding RNA region were carried out without isolating individual cell populations. This approach, due to the high cellular heterogeneity of the placental tissue, significantly complicates the ability to determine the molecular-biological functions of individual cells and their role in the molecular pathogenesis of reproductive disorders. In this work, we propose a technique for obtaining total RNA from single decidual cells of frozen placental tissue obtained by laser-capture microdissection technology for transcriptome sequencing, including a cluster of noncoding RNAs. This technique can be successfully used to study the full-genome expression profile of other placental cell populations. The high accuracy of results on the transcriptome profiling of decidual cells obtained using the developed technique was additionally confirmed by an integrative analysis with the results of a 10x Genomics experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Tsang J., Vong J., Liona L., Poon C., Jiang P., Lui K., Ni Y., To K., Cheng Y., Chiu R., Ming Y., Lo D. 2017. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc. Natl. Acad. Sci. U. S. A. 114 (37), 7786–7795.

    Google Scholar 

  2. Vinketova K., Mourdjeva M., Oreshkova T. 2016. Human decidual stromal cells as a component of the implantation niche and a modulator of maternal immunity. J. Pregnancy. 2016, 8689436.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pavlicev M., Wagner G., Chavan A., Owens K., Maziarz J., Dunn-Fletcher C., Kallapur S., Muglia L., Jones H. 2017. Single-cell transcriptomics of the human placenta: Inferring the cell communication network of the maternal-fetal interface. Genome Res. 27, 349–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y., Fan X., Wang R., Lu X., Dang Y., Wang H., Lin H., Zhu C., Ge H., Cross J., Wang H. 2018. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 28, 819–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suryawanshi H., Morozov P., Straus A., Sahasrabudhe N., Max K., Garzia A., Kustagi M., Tuschl T., Williams Z. 2018. A single-cell survey of the human first-trimester placenta and decidua. Sci. Adv. 4, 4788.

    Article  Google Scholar 

  6. Pique-Regi R., Romero R., Tarca A., Sendler E., Xu Y., Garcia-Flores V., Leng Y., Luca F., Hassan S., Gomez-Lopez N. 2019. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife. 8, e52004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pique-Regi R., Romero R., Tarca A., Luca F., Xu Y., Alazizi A., Leng Y., Hsu C., Gomez-Lopez N. 2020. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? eLife. 9, e58716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brosens J., Pijnenborg R., Brosens I. 2002. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: A review of the literature. Am. J. Obstet. Gynecol. 187(5), 1416–1423.

    Article  PubMed  Google Scholar 

  9. Conrad K., Maria Belen Rabaglino, Uiterweer E. 2017. Emerging role for dysregulated decidualization in the genesis of preeclampsia. Placenta. 60, 119–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fasterius E., Uhlen M., C. Szigyarto (2019. Single-cell RNA-seq variant analysis for exploration of genetic heterogeneity in cancer. Sci. Rep. 9, 9524.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yoffe L., Gilam A., Yaron O., Polsky A., Farberov L., Syngelaki A., Nicolaides K., Hod M., Shomron N. 2018. Early detection of preeclampsia using circulating small non-coding RNA. Sci. Rep. 8, 3401.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klohonatz K., Coleman S., Islas-Trejo A., Medrano J., Hess A., Kalbfleisch T., Thomas M., Bouma G., Bruemmer J. 2019. Coding RNA sequencing of equine endometrium during maternal recognition of pregnancy. Genes. 10, 749.

    Article  CAS  PubMed Central  Google Scholar 

  13. Aznaourova M., Janga H., Sefried S., Kaufmann A., Dorna J., Volkers S., Georg P., Lechner M., Hoppe J., Dokel S., Schmerer N., Gruber A., Linne U., Bauer S., Sander L., et al. 2020. Noncoding RNA MaIL1 is an integral component of the TLR4-TRIF pathway. Proc. Natl. Acad. Sci. U. S. A. 117 (16), 9042–9053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Statello L., Guo C., Chen L., Huarte M. 2020. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liang J., Wang S., Wang Z. 2017. Role of microRNAs in embryo implantation. Reprod. Biol. Endocrinol. 15, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Skalis G., Katsi V., Miliou A., Georgiopoulos G., Papazachou O., Vamvakou G., Nihoyannopoulos P., Tousoulis D., Makris T. 2019. MicroRNAs in preeclampsia. MicroRNA. 8 (1), 28–35.

    Article  CAS  PubMed  Google Scholar 

  17. Apicella C., Ruano C., Mehats C., Miralles F., Vaiman D. 2019. The role of epigenetics in placental development and the etiology of preeclampsia. Int. J. Mol. Sci. 20, 2837.

    Article  CAS  PubMed Central  Google Scholar 

  18. Robson S., Simpson H., Ball E., Lyall F., Bulmer J. 2002. Punch biopsy of the human placental bed. Am. J. Obstet. Gynecol. 187 (5), 1349–1355.

    Article  PubMed  Google Scholar 

  19. Cummings M., Mappa G., Orsi N.M. 2018. Laser capture microdissection and isolation of high-quality RNA from frozen endometrial tissue. Methods Mol. Biol. 1723, 155‒166. https://doi.org/10.1007/978-1-4939-7558-7_8

    Article  CAS  PubMed  Google Scholar 

  20. Bevilacqua C., Makhzami S., Helbling J. C., Defrenaix P., Martin P. 2010. Maintaining RNA integrity in a homogeneous population of mammary epithelial cells isolated by laser capture microdissection. BMC Cell Biol. 11, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nichterwitz S., Benitez J.A, Hoogstraaten R., Deng Q., Hedlund E. 2018. LCM-Seq: A method for spatial transcriptomic profiling using laser capture microdissection coupled with polyA-based RNA sequencing. Methods Mol. Biol. 1649, 95–110.

    Article  CAS  PubMed  Google Scholar 

  22. Barwinska D., Ferkowicz M.J., Cheng Y.H., Winfree S., Dunn K. W., Kelly K.J., Sutton T.A., Rovin B.H., Parikh S.V., Phillips C.L., Dagher P.C., El-Achkar T.M., Eadon M.T., Kidney Precision Medicine Project. 2020. Application of laser microdissection to uncover regional transcriptomics in human kidney tissue. J. Vis. Exp. 160, https://doi.org/10.3791/61371. 10.3791/61371

  23. Ong C.J., Tan Q.X., Lim H.J., Shannon N.B., Lim W.K., Hendrikson J., Ng W.H., Tan J., Koh K., Wasudevan S.D., Ng C., Rajasegaran V., Lim T., Ong C.K., Kon O.L., et al. 2020. An optimised protocol harnessing laser capture microdissection for transcriptomic analysis on matched primary and metastatic colorectal tumours. Sci. Rep. 10 (1), 682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan D., Xu M., Chang X., Xia M., Fang Y., Fu Y., Shen W., Wang Y., Sun X. 2020. Laser capture microdissection-based RNA microsequencing reveals optic nerve crush-related early mRNA alterations in retinal ganglion cell layer. Transl. Vis. Sci. Technol. 9 (11), 30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Russian Foundation for Basic Research (grant nos. 20-34-90128 and 18-29-13045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Babovskaya.

Ethics declarations

Conflict of interests. The authors declare they have no conflicts of interest.

This study was reviewed by the Biomedical Ethics Committee of the Research Institute of Medical Genetics of the Federal State Budgetary Scientific Institution “Tomsk National Research Medical Center” (registration number 136, registration date 11.11.2019). All procedures performed in this work are in accordance with the ethical standards of the institutional committee on research ethics and the 1964 Declaration of Helsinki and its subsequent amendments or comparable standards of ethics. Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babovskaya, A.A., Trifonova, E.A., Serebrova, V.N. et al. Protocol of Transcriptome Analysis of Decidual Placenta Cells. Mol Biol 56, 276–282 (2022). https://doi.org/10.1134/S0026893322020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322020030

Keywords:

Navigation