Skip to main content
Log in

ORF19.2286 Gene: Isolation and Purification of Deoxyhypusine Hydroxylase from the Human Pathogenic Yeast Candida albicans

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Candida albicans (C. albicans) is a fungal pathogen that causes infections of the wet body surfaces and the blood in immunocompromised patients or individuals with imbalanced microflora. Since the cases of clinically meaningful candidosis are on the rise, efficient C. albicans therapy is in a high demand. Informed drug design requires well-characterized C. albicans targets, including these aimed at disrupting its post-translational modifications. C. albicans ORF19.2286 gene encodes an ortholog of human deoxyhypusine hydroxylase (DOHH). Here, this ORF was cloned from the SC5314 strain and re-expressed in Escherichia coli as sGB1-CaDOHH construct with 6×His tag on the N-terminus of the fusion protein, then purified, and GB1-tag was removed with Tobacco etch virus (TEV) protease. Several amino acid sequence differences between C. albicans and animal DOHHs were noted, and are useful for a selection of the binding sites for antimicrobials in CaDOHH. We present the protocol for the heterologous expression and purification of C. albicans DOHH, which is suitable for further crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Fox E.P., Nobile C.J. 2012. A sticky situation: Untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 3, 315–322.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Douglas L.J. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11, 30–36.

    Article  CAS  PubMed  Google Scholar 

  3. Gulati M., Nobile C.J. 2016. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes Infect. 18, 310–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossi D., Kuroshu R., Zanelli C.F., Valentini S.R. 2014. eIF5A and EF-P: Two unique translation factors are now traveling the same road. Wiley Interdiscip. Rev. RNA. 5, 209–222.

    Article  CAS  PubMed  Google Scholar 

  5. Park M.H., Wolff E.C. 2018. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J. Biol. Chem. 293, 18710–18718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolff E.C., Wolff J., Park M.H. 2000. Deoxyhypusine synthase generates and uses bound NADH in a transient hydride transfer mechanism. J. Biol. Chem. 275, 9170–9177.

    Article  CAS  PubMed  Google Scholar 

  7. Kim Y.S., Kang K.R., Wolff E.C., Bell J.K., McPhie P., Park M.H. 2006. Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis. J. Biol. Chem. 281, 13217–13225.

    Article  CAS  PubMed  Google Scholar 

  8. Park J.H., Wolff E.C., Folk J.E., Park M.H. 2003. Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase. J. Biol. Chem. 278, 32683–32691.

    Article  CAS  PubMed  Google Scholar 

  9. Sievert H., Pallmann N., Miller K.K., Hermans-Borgmeyer I., Venz S., Sendoel A., Preukschas M., Schweizer M., Boettcher S., Janiesch P.C., Streichert T., Walther R., Hengartner M.O., Manz M.G., Brummendorf T.H., et al. 2014. A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation. Dis. Model. Mech. 7, 963–976.

    PubMed  PubMed Central  Google Scholar 

  10. Han Z., Sakai N., Bottger L.H., Klinke S., Hauber J., Trautwein A.X., Hilgenfeld R. 2015. Crystal structure of the peroxo-diiron(III) intermediate of deoxyhypusine hydroxylase, an oxygenase involved in hypusination. Structure. 23, 882–892.

    Article  CAS  PubMed  Google Scholar 

  11. Cano V.S., Medrano F.J., Park M.H., Valentini S.R. 2010. Evidence for conformational changes in the yeast deoxyhypusine hydroxylase Lia1 upon iron displacement from its active site. Amino Acids. 38, 479–490.

    Article  CAS  PubMed  Google Scholar 

  12. Park J.H., Aravind L., Wolff E.C., Kaevel J., Kim Y.S., Park M.H. 2006. Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: A HEAT-repeat-containing metalloenzyme. Proc. Natl. Acad. Sci. U. S. A. 103, 51–56.

    Article  CAS  PubMed  Google Scholar 

  13. Weir B.A., Yaffe M.P. 2004. Mmd1p, a novel, conserved protein essential for normal mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell. 15, 1656–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leonhard M., Zatorska B., Moser D., Schneider-Stickler B. 2019. Growth media for mixed multispecies oropharyngeal biofilm compositions on silicone. Biomed. Res. Int. 2019, 8051270.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  16. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39, 783–791.

    Article  PubMed  Google Scholar 

  17. Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282.

    CAS  PubMed  Google Scholar 

  18. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bogomolovas J., Simon B., Sattler M., Stier G. 2009. Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Exp. Purif. 64, 16–23.

    Article  CAS  Google Scholar 

  20. Skrzypek M.S., Binkley J., Binkley G., Miyasato S.R., Simison M., Sherlock G. 2017. The Candida Genome Database (CGD): Incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596.

    Article  CAS  PubMed  Google Scholar 

  21. Schein C.H., Noteborn M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nat. Biotechnol. 6, 291–294.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant no. 20-65-47031.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Usachev or Sh. Validov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

The text was submitted by the author(s) in English.

Abbreviations: CRB, Cell Resuspension Buffer; GB1, B1 domain of streptococcal protein G; DHS, deoxyhypusine synthase; DOHH, deoxyhypusine hydroxylase; TEV, Tobacco etch virus; PAGE, polyacrylamide gel electrophoresis; aa, amino acids.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agboigba, E., Kuchaev, E., Garaeva, N. et al. ORF19.2286 Gene: Isolation and Purification of Deoxyhypusine Hydroxylase from the Human Pathogenic Yeast Candida albicans. Mol Biol 56, 269–275 (2022). https://doi.org/10.1134/S0026893322020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322020029

Keywords:

Navigation