Abstract
A fundamental difference between somatic nuclei (macronuclei) of ciliates and cell nuclei of higher eukaryotes is that the macronuclear genome is a huge number (up to tens or hundreds of thousands) of gene-sized (0.5–25 kb) or subchromosomal (up to 2000 kb) minichromosomes. Electron microscopy shows that macronuclear chromatin usually looks like chromatin bodies or fibrils 200–300 nm thick in the interphase. However, the question of how many DNA molecules are contained in an individual chromatin body remains open. The organization of chromatin in macronuclei was studied in the ciliates Didinium nasutum and three Paramecium sp., which differ in pulsed-field gel electrophoresis (PFGE) karyotype, and compared with the model of topologically associated domains (TADs) of higher eukaryotic nuclei. PFGE showed that the sizes of macronuclear DNAs ranged from 50 to 1700 kb, while the majority of the molecules were less than 500 kb in length. A comparative quantitative analysis of the PFGE and electron microscopic data showed that each chromatin body contained one minichromosome in P. multimicronucleatum in the logarithmic growth phase, while bodies in the D. nasutum macronucleus contained two or more DNA molecules each. Chromatin bodies aggregated during starvation, when activity of the macronuclei decreased, leading to an increase of chromatin body size or the formation of 200- to 300-nm fibrils of several chromatin bodies. A model was proposed to explain the formation of such structures. In terms of topological characteristics, macronuclear chromatin bodies with subchromosomal DNA molecules were found to correspond to higher eukaryotic TADs.
Similar content being viewed by others
REFERENCES
Cremer T., Cremer M., Cremer C. 2018. The 4D nucleome: Genome compartmentalization in an evolutionary context. Biochemistry (Moscow). 83 (4), 313–325.
Postberg J., Lipps H.J., Cremer T. 2010. Evolutionary origin of the cell nucleus and its functional architecture. Essays Biochem. 48, 1–24.
Razin S.V., Ulianov S.V., Gavrilov A.A. 2019. 3D Genomics. Mol. Biol. (Moscow). 53 (6), 911–923.
Razin S.V. 1996. Functional architecture of chromosomal DNA domains. Crit. Rev. Eukaryot. Gene Expr. 6, 247–269.
Cockerill P.N., Garrard W.T. 1986. Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett. 204, 5–7.
Gasser S.M., Laemmli U.K. 1986. The organization of chromatin loops: characterization of a scaffold attachment site. EMBO J. 5, 511–518.
Iarovaia O., Hancock R., Lagarkova M., Miassod R., Razin S.V. 1996. Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome by the topoisomerase II-mediated DNA loop excision protocol. Mol. Cell. Biol. 16, 302–308.
Marsden M.P.F., Laemmli U.K. 1979. Metaphase chromosome structure: Evidence for a radial loop model. Cell. 17, 849–858.
Belmont A.S., Sedat J.W., Agard D.A. 1987. A three-dimensional approach to mitotic chromosome structure: Evidence for a complex hierarchical organization. J. Cell Biol. 105, 77–92.
Zatsepina O.V., Polyakov V.Yu., Chentsov Yu.S. 1983. Chromonema and chromomere. Chromosoma. 88(2) 91–97.
Cook P.R. 1995. A chromomeric model for nuclear and chromosome structure. J. Cell Sci. 108, 2927–2935.
Razin S.V., Iarovaia O.V., Vassetzky Y.S. 2014. A requiem to the nuclear matrix: From a controversial concept to 3D organization of the nucleus. Chromosoma. 123, 217–224.
Nishino Y., Eltsov M., Joti Y., Ito K., Takata H., Takahashi Y., Hihara S., Frangakis A.S., Imamoto N., Ishikawa T., Maeshima K. 2012. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 31, 1644–1653.
Ou H.D., Phan S., Deerinck T.J., Thor A., Ellisman M.H., O’Shea C.C. 2017. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 357 (6349), eaag0025.
Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A., et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 326, 289–293.
Kalhor R., Tjong H., Jayathilaka N., Alber F., Chen L. 2012. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98.
Kantidze O.L., Razin S.V. 2020. Weak interactions in higher-order chromatin organization. Nucleic Acids Res. 48, 4614–4626.
Razin S.V., Gavrilov A.A. 2018. Structural–functional domains of the eukaryotic genome. Biochemistry (Moscow). 83 (4), 302–312.
Jahn C.L., Klobutcher L.A. 2002. Genome remodeling in ciliated Protozoa. Ann. Rev. Microbiol. 56, 489–520.
Raikov I.B. 1982. The protozoan nucleus. Morphology and evolution. Cell Biol. Monogr. 9, 1–474.
Nekrasova I.V., Potekhin A.A. 2018. RNA interference in the formation of somatic genome in the ciliates Paramecium and Tetrahymena. Ekol. Genet. 16, 5–22.
Martinkina L.P., Vengerov Yu.Yu., Bespalova I.A., Tikhonenko A.S., Sergejeva G.I. 1983. The structure of inactive interphase macromolecular chromatin of the ciliate Bursaria truncatella. Radial loops in the structure of chromatin clumps. Eur. J. Cell Biol. 30, 47–53.
Borkhsenius O.N., Belyaeva N.N., Osipov D.V. 1988. Chromatin structure in the somatic nucleus of the ciliate Spirostomum ambiguum. Tsitologiya. 30, 762–769.
Karajan B.P., Popenko V.I., Raikov I.B. 1995. Organization of transcriptionally inactive chromatin of interphase macronucleus of the ciliate Didinium nasutum. Acta Protozool. 34, 135–141.
Leonova O.G., Ivanova Yu.L., Karajan B.P., Popenko V.I. 2004. Dynamics of ultrastructural changes of chromatin and nucleoli in the macronucleus of ciliates Paramecium caudatum and Bursaria truncatella under hypotonic treatment. Tsitologiya. 46, 456–464.
Sonneborn T.M. 1970. Methods in Paramecium research. Methods Cell Physiol. 4, 241–339.
Rautian M.S., Potekhin A.A. 2002. Electrokaryotypes of macronuclei of several Paramecium species. J. Eukaryot. Microbiol. 49, 296–304.
Nekrasova I.V., Przybos E., Rautian M.S., Potekhin A.A. 2010. Electrophoretic karyotype polymorphism of sibling species of the Paramecium aurelia complex. J. Eukaryot. Microbiol. 57, 494–507.
Timofeeva A.S., Rautian M.S. 1997. Pulsed-field electrophoresis used to determining the genome size of intranuclear symbiotic bacterium Holospora undulata. Tsitologiya. 39, 634–639.
Kornberg R.D. 1977. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954.
Olins A.L., Olins D.E. 1974. Spheroid chromatin units (ν bodies). Science. 183, 330–332.
Tikhonenko A.S., Bespalova I.A., Martinkina L.P., Popenko V.I., Sergejeva G.I. 1984. Structural organization of macronuclear chromatin of the ciliate Bursaria truncatella in resting cysts and at excysting. Eur. J. Cell. Biol. 33, 37–42.
Sloane N.J.A. 1984. The packing of spheres. Sci. Am. 25, 116–124.
Duret L., Cohen J., Jubin C., Dessen F., Goüt J.-F., Mousset S., Aury J.-M., Jaillon O., Noël B., Arnaiz O., Bétermier M., Wincker P., Meyer E., Sperling L. 2008. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: A somatic view of the germline. Genome Res. 18, 585–596.
Pritchard A.E., Seilhamer J.J., Mahalingam R., Sable C.L., Venuti S.E., Cummings D.J. 1990. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 18, 173–180.
Johri P., Marinov G.K., Doak T.G., Lynch M. 2019. Population genetics of Paramecium mitochondrial genomes: Recombination, mutation spectrum, and efficacy of selection. Genome Biol. Evol. 11, 1398–1416.
Arnaiz O., Meyer E., Sperling L. 2020. Paramecium DB 2019: Integrating genomic data across the genus for functional and evolutionary biology. Nucleic Acids Res. 48, D599–D605.
Bernhard W. 1969. A new staining procedure for electron microscopical cytology. J. Ultrastruct. Res. 27, 250–265.
Richmond T.J., Davey C.A. 2003. The structure of DNA in the nucleosome core. Nature. 423, 145–150.
Murti K.G., Prescott D.M. 1999. Telomeres of polytene chromosomes in a ciliated protozoan terminate in duplex DNA loops. Proc. Natl. Acad. Sci. U. S. A. 96, 14436–14439.
Murti K.G., Prescott D.M. 2002. Topological organization of DNA molecules in the macronucleus of hypotrichous ciliated protozoa. Chromosome Res. 10, 165–173.
Jönsson F., Postberg J., Schaffitzel C., Lipps H.J. 2002. Organization of the macronuclear gene-sized pieces of stichotrichous ciliates into a higher order structure via telomere–matrix interactions. Chromosome Res. 10, 445–453.
Schaffitzel C., Postberg J., Paeschke K., Lipps H.J. 2010. Probing telomeric G-quadruplex DNA structures in cells with in vitro generated single-chain antibody fragments. Meth. Mol. Biol. 608, 159–181.
Novikova E.G., Popenko V.I. 1998. Visualization of chromatin structural organization centers in the macronucleus of a ciliate Bursaria truncatella. Mol. Biol. (Moscow). 32 (3), 439–446.
Gavrilov A.A., Shevelyov Y.Y., Ulianov S.V., Khrameeve E.E., Kos P., Chertovich A., Razin S.V. 2016. Unraveling the mechanisms of chromatin fibril packaging. Nucleus. 7, 319–324.
Rao S.S., Huntley M.H., Durand N.C., Stamenova E.K., Bochkov I.D., Robinson J.T., Sanborn A.L., Machol I., Omer A.D., Lander E.S., Aiden E.L. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 159, 1665–1680.
Kolesnikova T.D. 2018. Banding pattern of polytene chromosomes as a representation of universal principles of chromatin organization into topological domains. Biochemistry (Moscow). 83 (4), 338–349.
Funding
This work was supported by the Program of Basic Research at the State Academies of Sciences from 2013 to 2020 (project no. 01201363823).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests. The authors declare that they have no conflicts of interest.
This work does not contain any studies involving animals or human subjects performed by any of the authors.
Additional information
Translated by T. Tkacheva
Abbreviations: TAD, topologically associated domain; PFGE, pulsed-field gel electrophoresis; TeBP, telomere-binding protein.
Rights and permissions
About this article
Cite this article
Leonova, O.G., Potekhin, A.A., Nekrasova, I.V. et al. Packaging of Subchromosomal-Size DNA Molecules in Chromatin Bodies in the Ciliate Macronucleus. Mol Biol 55, 899–909 (2021). https://doi.org/10.1134/S0026893321050083
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0026893321050083