Skip to main content
Log in

Natural Selection as a Driver for the Genetic Component of Preeclampsia

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a severe hypertensive pathology and affects 2–8% of pregnancies worldwide. Its etiopathogenesis is poorly understood, and prognostic biomarkers and effective treatments are unavailable for this pregnancy complication, determining the high rates of maternal and perinatal morbidity and mortality. Racial and ethnic differences in PE incidence are of interest to study in terms of evolutionary medicine because such variability can be considered as a side effect of adaptive changes that have occurred in the genetic structure of modern populations since the dispersal of Homo sapiens from Africa. Genetic diversity at 10 regulatory single nucleotide polymorphisms (rSNPs) associated with PE was studied in North Eurasian populations and world populations of the 1000 Genomes Project. The role of natural selection in the formation of this genetic diversity was assessed at the microevolutionary level. High interpopulation diversity was observed with the greatest contribution being made by allele frequencies of NDRG1 rs3802252 (FST = 0.157). Signatures of natural selection were detected for rs10423795 of LHB, rs2167270 of LEP, rs2227262 and rs3802252 of NDRG1, rs56153523 and rs8109071 of SYDE1, and rs72959687 of INHA. The results are consistent with two evolutionary hypotheses of PE, namely, those of ancestral susceptibility and genetic conflicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Phipps E.A., Thadhani R., Benzing T., Karumanchi S.A. 2019. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 15 (5), 275–289. https://doi.org/10.1038/s41581-019-0119-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tannetta D., Sargent I. 2013. Placental disease and the maternal syndrome of preeclampsia: Missing links? Curr. Hypertens. Rep. 15 (6), 590–599. https://doi.org/10.1007/s11906-013-0395-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gathiram P., Moodley J. 2016. Pre-eclampsia: its pathogenesis and pathophysiolgy. Cardiovasc. J. Afr. 27 (2), 71–78. https://doi.org/10.5830/CVJA-2016-009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robillard P.Y., Dekker G., Chaouat G., Scioscia M., Iacobelli S., Hulsey T.C. 2017. Historical evolution of ideas on eclampsia/preeclampsia: A proposed optimistic view of preeclampsia. J. Reprod. Immunol. 123, 72–77. https://doi.org/10.1016/j.jri.2017.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adamyan L.V., Artymuk N.V., Bashmakova N.V., Belokrinnitskaya T.E., Belomestnov S.R., Bratishchev I.V., Vuchenovich Yu.D., Krasnopol’skii V.I., Kulikov A.V., Levit A.L., Nikitina N.A., Petrukhin V.A., Pyregov A.V., Serov V.N., Sidorova I.S., et al. 2016. Klinicheskie rekomendatsii “Gipertenzivnye rasstroistva vo vremya beremennosti, v rodakh i poslerodovom periode. Preeklampsiya. Eklampsiya” (Hypertensive Disprders in Pregnancy, during Delivery, and in the puerperium: Clinical Guidelines), Moscow.

  6. Burton G.J., Redman C.W., Roberts J.M., Moffett A. 2019. Pre-eclampsia: Pathophysiology and clinical implications. BMJ. 366, l2381. https://doi.org/10.1136/bmj.l2381

    Article  PubMed  Google Scholar 

  7. Trifonova E.A., Svarovskaya M.G., Serebrova V.N., Kutsenko I.G., Agarkova L.A., Stepanov I.A., Zhilyakova O.V., Gabidulina T.V., Izhoikina E.V., Stepa-nov V.A. 2020. Genomic and postgenomic technologies in preeclampsia genetics. Russ. J. Genet. 56 (5), 513–529. https://doi.org/10.31857/S0016675820050136

    Article  CAS  Google Scholar 

  8. Zhang G., Zhao J., Yi J., Luan Y., Wang Q. 2016. Association between gene polymorphisms on chromosome 1 and susceptibility to pre-eclampsia: An updated meta-analysis. Med. Sci. Monit. 22, 2202–2214. https://doi.org/10.12659/msm.896552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou L., Cheng L., He Y., Gu Y., Wang Y., Wang C. 2016. Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with pre-eclampsia in Chinese women. Inflamm. Res. 65 (9), 717–724. https://doi.org/10.1007/s00011-016-0953-y

    Article  CAS  PubMed  Google Scholar 

  10. Gong J., Savitz D.A., Stein C.R., Engel S.M. 2012. Maternal ethnicity and pre-eclampsia in New York City, 1995–2003. Paediatr. Perinat. Epidemiol. 26 (1), 45–52. https://doi.org/10.1111/j.1365-3016.2011.01222.x

    Article  PubMed  Google Scholar 

  11. Nakimuli A., Chazara O., Byamugisha J., Elliott A.M., Kaleebu P., Mirembe F., Moffett A. 2014. Pregnancy, parturition and preeclampsia in women of African ancestry. Am. J. Obstet. Gynecol. 210 (6), 510–520.e1. https://doi.org/10.1016/j.ajog.2013.10.879

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xiao J., Shen F., Xue Q., Chen G., Zeng K., Stone P., Zhao M., Chen Q. 2014. Is ethnicity a risk factor for developing preeclampsia? An analysis of the prevalence of preeclampsia in China. J. Hum. Hypertens. 28 (11), 694–698. https://doi.org/10.1038/jhh.2013.148

    Article  CAS  PubMed  Google Scholar 

  13. Brown I.J., Tzoulaki I., Candeias V., Elliott P. 2009. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 38 (3), 791–813. https://doi.org/10.1093/ije/dyp139

    Article  PubMed  Google Scholar 

  14. Brown E.A., Ruvolo M., Sabeti P.C. 2013. Many ways to die, one way to arrive: How selection acts through pregnancy. Trends. Genet. 29 (10), 585–592. https://doi.org/10.1016/j.tig.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed S., Ibrahim M.E., Khalil E. 2017. High altitude and pre-eclampsia: Adaptation or protection. Med. Hypotheses. 104, 128–132. https://doi.org/10.1016/j.mehy.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  16. Handa V.L., Lockhart M.E., Fielding J.R., Bradley C.S., Brubaker L., Cundiff G.W., Ye W., Richter H.E., Pelvic Floor Disorders Network. 2008. Racial differences in pelvic anatomy by magnetic resonance imaging. Obstet. Gynecol. 111 (4), 914–920. https://doi.org/10.1097/AOG.0b013e318169ce03

    Article  PubMed  PubMed Central  Google Scholar 

  17. Serebrova V.N., Trifonova E.A., Stepanov V.A. 2019. In: Mezhdunarodnyi kongress “VII S”ezd Vavilovskogo obshchestva genetikov i selektsionerov, posvyashchennyi 100-letiyu kafedry genetiki SPbGU, i assotsiirovannye simpoziumy” (Abstr. Int. Congress–VII Conf. Vavilov Society of Geneticists and Breeders Dedicated to the 100th Anniversary of the Department of Gneetics, St. Persburg State University, and Associated Symposia), St. Petersburg, p. 673.

  18. 1000 Genomes Project Consortium, Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. 2015. A global reference for human genetic variation. Nature. 526 (7571), 68–74. https://doi.org/10.1038/nature15393

  19. Serebrova V.N., Trifonova E.A., Gabidulina T.V., Bukharina I.Yu., Agarkova T.A., Evtushenko I.D., Maksimova N.R., Stepanov V.A. 2016. Detection of novel genetic markers of susceptibility to preeclampsia based on an analysis of the regulatory genes in the placental tissue. Mol. Biol. (Moscow). 50 (5), 870–879. https://doi.org/10.7868/S0026898416050165

    Article  CAS  Google Scholar 

  20. Serebrova V.N., Trifonova E.A., Stepanov V.A. 2018. Evolutionary-genetic analysis of the role of regulatory regions in NDRG1 gene in the formation of the hereditary predisposition to preeclampsia in different ethnic groups. Med. Genet. 17 (1), 32–36. https://doi.org/10.25557/2073-7998.2018.01.32-36

    Article  Google Scholar 

  21. Serebrova V.N., Trifonova E.A., Stepanov V.A. 2018. Evolutionary-genetic analysis of the role of gene CORO2A regulatory regions in the formation of hereditary predisposition to preeclampsia in the Russians and Yakuts. Nauch. Rezul’taty Biomed. Issled. 4 (3), 38–48. https://doi.org/10.18413/2313-8955-2018-4-3-0-4

    Article  Google Scholar 

  22. Serebrova V.N., Trifonova E.A., Vorozhishcheva A.Yu., Stepanov V.A. 2019. The role of gene SYDE1 regulatory regions in the formation of hereditary predisposition to preeclampsia. Med. Genet. 18 (1), 35–38.

    Google Scholar 

  23. Watterson G.A. 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7 (2), 256–276. https://doi.org/10.1016/0040-5809(75)90020-9

    Article  CAS  PubMed  Google Scholar 

  24. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123 (3), 585–595.

    Article  CAS  Google Scholar 

  25. Fu Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 147 (2), 915–925.

    Article  CAS  Google Scholar 

  26. Hedrick P.W. 2000. Genetics of Populations. Sudbury, MA: Jones and Bartlett Publ.

    Google Scholar 

  27. Raghavan M., Steinrücken M., Harris K., Schiffels S., Rasmussen S., DeGiorgio M., Albrechtsen A., Valdiosera C., Ávila-Arcos M.C., Malaspinas A.S., Eriksson A., Moltke I., Metspalu M., Homburger J.R., Wall J., et al. 2015. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science. 349 (6250), aab3884. https://doi.org/10.1126/science.aab3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lapaire O., Grill S., Lalevee S., Kolla V., Hösli I., Hahn S. 2012. Microarray screening for novel preeclampsia biomarker candidates. Fetal. Diagn. Ther. 31 (3), 147–153. https://doi.org/10.1159/000337325

    Article  PubMed  Google Scholar 

  29. Meng T., Chen H., Sun M., Wang H., Zhao G., Wang X. 2012. Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays. OMICS. 16 (6), 301–311. https://doi.org/10.1089/omi.2011.0066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trifonova E.A., Gabidulina T.V., Ershov N.I., Serebrova V.N., Vorozhishcheva A.Yu., Stepanov V.A. 2014. Characteristics of the placental tissue transcriptome in women with physiological pregnancy and preeclampsia. Acta Naturae. 6 (2), 77–90.

    Article  Google Scholar 

  31. Nishizawa H., Ota S., Suzuki M., Kato T., Sekiya T., Kurahashi H., Udagawa Y. 2011. Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction. Reprod. Biol. Endocrinol. 9, 107. https://doi.org/10.1186/1477-7827-9-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sitras V., Paulssen R.H., Grønaas H., Leirvik J., Hanssen, T.A., Vårtun A., Acharya G. 2009. Differential placental gene expression in severe preeclampsia. Placenta. 30 (5), 424–433. https://doi.org/10.1016/j.placenta.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Enquobahrie D.A., Meller M., Rice K., Psaty B.M., Siscovick, D.S., Williams M.A. 2008. Differential placental gene expression in preeclampsia. Am. J. Obstet. Gynecol. 199 (5), 566.e1–566.e11. https://doi.org/10.1016/j.ajog.2008.04.020

  34. Reimer T., Koczan D., Gerber B., Richter D., Thiesen H.J., Friese K. 2002. Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes. Mol. Hum. Reprod. 8 (7), 674–680. https://doi.org/10.1093/molehr/8.7.674

    Article  CAS  PubMed  Google Scholar 

  35. Várkonyi T., Nagy B., Füle T., Tarca A.L., Karászi K., Schönléber J., Hupuczi P., Mihalik N., Kovalszky I., Rigó J., Jr, Meiri H., Papp Z., Romero R., Than N.G. 2011. Microarray profiling reveals that placental transcriptomes of early-onset HELLP syndrome and preeclampsia are similar. Placenta. 32 (Suppl.), S21–S29. https://doi.org/10.1016/j.placenta.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  36. Paiwattananupant K., Phupong V. 2008. Serum inhibin A level in preeclampsia and normotensive pregnancy. Hypertens. Pregnancy. 27 (4), 337–343. https://doi.org/10.1080/10641950802020545

    Article  CAS  PubMed  Google Scholar 

  37. Louwen F., Muschol-Steinmetz C., Reinhard J., Reitter A., Yuan J. 2012. A lesson for cancer research: placental microarray gene analysis in preeclampsia. Oncotarget. 3 (8), 759–773. https://doi.org/10.18632/oncotarget.595

    Article  PubMed  PubMed Central  Google Scholar 

  38. Matarese G., Moschos S., Mantzoros C.S. 2005. Leptin in immunology. J. Immunol. 174 (6), 3137–3142. https://doi.org/10.4049/jimmunol.174.6.3137

    Article  CAS  PubMed  Google Scholar 

  39. Haram K., Mortensen J.H., Nagy B. 2014. Genetic aspects of preeclampsia and the HELLP syndrome. J. Pregnancy. 2014, 910751. https://doi.org/10.1155/2014/910751

  40. Taylor B.D., Ness R.B., Olsen J., Hougaard D.M., Skogstrand K., Roberts J.M., Haggerty C.L. 2015. Serum leptin measured in early pregnancy is higher in women with preeclampsia compared with normotensive pregnant women. Hypertension. 65 (3), 594–599. https://doi.org/10.1161/HYPERTENSIONAHA.114.03979

    Article  CAS  PubMed  Google Scholar 

  41. Kalinderis M., Papanikolaou A., Kalinderi K., Vyzantiadis T.A., Ioakimidou A., Tarlatzis B.C. 2015. Serum levels of leptin and IP-10 in preeclampsia compared to controls. Arch. Gynecol. Obstet. 292 (2), 343–347. https://doi.org/10.1007/s00404-015-3659-4

    Article  CAS  PubMed  Google Scholar 

  42. Ellen T.P., Ke Q., Zhang P., Costa M. 2008. NDRG1, a growth and cancer related gene: Regulation of gene expression and function in normal and disease states. Carcinogenesis. 29 (1), 2–8. https://doi.org/10.1093/carcin/bgm200

    Article  CAS  PubMed  Google Scholar 

  43. Chen B., Nelson D.M., Sadovsky Y. 2006. N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury. J. Biol. Chem. 281 (5), 2764–2772. https://doi.org/10.1074/jbc.M507330200

    Article  CAS  PubMed  Google Scholar 

  44. Lo H.F., Tsai C.Y., Chen C.P., Wang L.J., Lee Y.S., Chen C.Y., Liang C.T., Cheong M.L., Chen H. 2017. Association of dysfunctional synapse defective 1 (SYDE1) with restricted fetal growth: SYDE1 regulates placental cell migration and invasion. J. Pathol. 241 (3), 324–336. https://doi.org/10.1002/path.4835

    Article  CAS  PubMed  Google Scholar 

  45. Szklarczyk D., Morris J.H., Cook H., Kuhn M, Wyder S., Simonovic M., SantosA., Doncheva N.T., Roth A., Bork P., Jensen L.J., von Mering C. 2017. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids. Res. 45, D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  46. Boyle A.P., Hong E.L., Hariharan M., Cheng Y., Schaub M.A., Kasowski M., Karczewski K.J., Park J., Hitz B.C., Weng S., Cherry J.M., Snyder M. 2012. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22 (9), 1790–1797. https://doi.org/10.1101/gr.137323.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim E.S., Cha Y., Ham M., Jung J., Kim S.G., Hwang S., Kleemann R., Moon A. 2014. Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression. Oncogene. 33 (27), 3583–3593. https://doi.org/10.1038/onc.2013.319

    Article  CAS  PubMed  Google Scholar 

  48. Wang W., Taylor R.N., Bagchi I.C., Bagchi M.K. 2012. Regulation of human endometrial stromal proliferation and differentiation by C/EBPβ involves cyclin E-cdk2 and STAT3. Mol. Endocrinol. 26 (12), 2016–2030. https://doi.org/10.1210/me.2012-1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ramathal C., Wang W., Hunt E., Bagchi I.C., Bagchi M.K. 2011. Transcription factor CCAAT enhancer-binding protein beta (C/EBPbeta) regulates the formation of a unique extracellular matrix that controls uterine stromal differentiation and embryo implantation. J. Biol. Chem. 286 (22), 19860–19871. https://doi.org/10.1074/jbc.M110.191759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radde J., Löning T., Bamberger A.M. 2004. Expression pattern of the CCAAT/enhancer-binding protein C/EBP-beta in gestational trophoblastic disease. Int. J. Gynecol. Pathol. 23 (4), 373–377. https://doi.org/10.1097/01.pgp.0000139645.32997.e1

    Article  PubMed  Google Scholar 

  51. Zhuang B., Luo X., Rao H., Li Q., Shan N., Liu X., Qi H. 2015. Oxidative stress-induced C/EBPβ inhibits β-catenin signaling molecule involving in the pathology of preeclampsia. Placenta. 36 (8), 839–846. https://doi.org/10.1016/j.placenta.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  52. Cassano S., Pucino V., La Rocca C., Procaccini C., De Rosa V., Marone G., Matarese G. 2014. Leptin modulates autophagy in human CD4+CD25– conventional T cells. Metabolism. 63 (10), 1272–1279. https://doi.org/10.1016/j.metabol.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weedon-Fekjær M.S., Sheng Y., Sugulle M., Johnsen G.M., Herse F., Redman C.W., Lyle R., Dechend R., Staff A.C. 2014. Placental miR-1301 is dysregulated in early-onset preeclampsia and inversely correlated with maternal circulating leptin. Placenta. 35 (9), 709–717. https://doi.org/10.1016/j.placenta.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  54. Tinel M., Berson A., Elkahwaji J., Cresteil T., Beaune P., Pessayre D. 2003. Downregulation of cytochromes P450 in growth-stimulated rat hepatocytes: Role of c-Myc induction and impaired C/EBP binding to DNA. J. Hepatol. 39 (2), 171–178. https://doi.org/10.1016/s0168-8278(03)00238-1

    Article  CAS  PubMed  Google Scholar 

  55. Wu K.J., Polack A., Dalla-Favera R. 1999. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science. 283 (5402), 676–679. https://doi.org/10.1126/science.283.5402.676

    Article  CAS  PubMed  Google Scholar 

  56. Shimono A., Okuda T., Kondoh H. 1999. N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech. Dev. 83 (1–2), 39–52. https://doi.org/10.1016/s0925-4773(99)00025-8

    Article  CAS  PubMed  Google Scholar 

  57. Zhang M., Muralimanoharan S., Wortman A.C., Mendelson C.R. 2016. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc. Natl. Acad. Sci. U. S. A. 113 (45), E7069–E7076. https://doi.org/10.1073/pnas.1607849113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar P., Luo Y., Tudela C., Alexander J.M., Mendelson C.R. 2013. The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol. Cell. Biol. 33 (9), 1782–1796. https://doi.org/10.1128/MCB.01228-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huggins C.J., Malik R., Lee S., Salotti J., Thomas S., Martin N., Quiñones O.A., Alvord W.G., Olanich M.E., Keller J.R., Johnson P.F. 2013. C/EBPγ suppresses senescence and inflammatory gene expression by heterodimerizing with C/EBPβ. Mol. Cell. Biol. 33 (16), 3242–3258. https://doi.org/10.1128/MCB.01674-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vaiman D., Miralles F. 2016. An integrative analysis of preeclampsia based on the construction of an extended composite network featuring protein–protein physical interactions and transcriptional relationships. PLoS One. 11 (11), e0165849. https://doi.org/10.1371/journal.pone.0165849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu Y., Fu X., Wang L. 2016. Identification of novel biomarkers for preeclampsia on the basis of differential expression network analysis. Exp. Ther. Med. 12 (1), 201–207. https://doi.org/10.3892/etm.2016.3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu N., Ding D., Hao W., Yang F., Wu X., Wang M., Xu X., Ju Z., Liu J.P., Song Z., Shay J.W., Guo Y., Cong Y.S. 2016. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucl. Acids Res. 44 (18), 8693–8703. https://doi.org/10.1093/nar/gkw549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Yang J, Lv S, Zhao D.Q., Chen Z.J., Li W.P., Zhang C. 2018. Downregulation of decidual SP1 and P300 is associated with severe preeclampsia. J. Mol. Endocrinol. 60 (2), 133–143. https://doi.org/10.1530/JME-17-0180

    Article  CAS  PubMed  Google Scholar 

  64. Vaiman D., Calicchio R., Miralles F. 2013. Landscape of transcriptional deregulations in the preeclamptic placenta. PLoS One. 8 (6), e65498. https://doi.org/10.1371/journal.pone.0065498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He P., Chen Z., Sun Q., Li Y., Gu H., Ni X. 2014. Reduced expression of 11β-hydroxysteroid dehydrogenase type 2 in preeclamptic placentas is associated with decreased PPARγ but increased PPARα expression. Endocrinology. 155 (1), 299–309. https://doi.org/10.1210/en.2013-1350

    Article  PubMed  Google Scholar 

  66. Lu W., Ma Y.Y., Shao Q.Q., Liang J., Qi T.T., Huang Y., Wang Q.J. 2020. ROS/p53/miR‑335‑5p/Sp1 axis modulates the migration and epithelial to mesenchymal transition of JEG‑3 cells. Mol. Med. Rep. 21 (3), 1208–1216. https://doi.org/10.3892/mmr.2019.10901

    Article  CAS  PubMed  Google Scholar 

  67. Gormley M., Ona K., Kapidzic M., Garrido-Gomez T., Zdravkovic T., Fisher S.J. 2017. Preeclampsia: Novel insights from global RNA profiling of trophoblast subpopulations. Am. J. Obstet. Gynecol. 217 (2), 200.e1–200.e17. https://doi.org/10.1016/j.ajog.2017.03.017

    Article  CAS  Google Scholar 

  68. Elliot M.G. 2016. Oxidative stress and the evolutionary origins of preeclampsia. J. Reprod. Immunol. 114, 75–80. https://doi.org/10.1016/j.jri.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  69. Haig D. 1993. Genetic conflicts in human pregnancy. Q. Rev. Biol. 68 (4), 495–532. https://doi.org/10.1086/418300

    Article  CAS  PubMed  Google Scholar 

  70. Pijnenborg R., Vercruysse L., Hanssens M. 2008. Fetal–maternal conflict, trophoblast invasion, preeclampsia, and the red queen. Hypertens. Pregnancy. 27 (2), 183–196. https://doi.org/10.1080/10641950701826711

    Article  PubMed  Google Scholar 

  71. Abrams E.T., Rutherford J.N. 2011. Framing postpartum hemorrhage as a consequence of human placental biology: An evolutionary and comparative perspective. Am. Anthropol. 113 (3), 417–430. https://doi.org/10.1111/j.1548-1433.2011.01351.x

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cole L.A., Khanlian S.A., Kohorn E.I. 2008. Evolution of the human brain, chorionic gonadotropin and hemochorial implantation of the placenta: Insights into origins of pregnancy failures, preeclampsia and choriocarcinoma. J. Reprod. Med. 53 (8), 549–557.

    CAS  PubMed  Google Scholar 

  73. Chaline J. 2003. Increased cranial capacity in hominid evolution and preeclampsia. J. Reprod. Immunol. 59 (2), 137–152. https://doi.org/10.1016/s0165-0378(03)00043-3

    Article  PubMed  Google Scholar 

  74. Robillard P.Y., Dekker G.A., Hulsey T.C. 2002. Evolutionary adaptations to pre-eclampsia/eclampsia in humans: Low fecundability rate, loss of oestrus, prohibitions of incest and systematic polyandry. Am. J. Reprod. Immunol. 47 (2), 104–111. https://doi.org/10.1034/j.1600-0897.2002.1o043.x

    Article  PubMed  Google Scholar 

  75. Crosley E.J., Elliot M.G., Christians J.K., Crespi B.J. 2013. Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: Evidence from genome-wide analyses. Placenta. 34 (2), 127–132. https://doi.org/10.1016/j.placenta.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  76. Elliot M.G., Crespi B.J. 2015. Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals. Philos. Trans. R. Soc. Lond. B. 370 (1663), 20140069. https://doi.org/10.1098/rstb.2014.0069

    Article  Google Scholar 

  77. Than N.G., Romero R., Xu Y., Erez O., Xu Z., Bhatti G., Leavitt R., Chung T.H., El-Azzamy H., LaJeunesse C., Wang B., Balogh A., Szalai G., Land S., Dong Z., et al. 2014. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta. 35 (11), 855–865. https://doi.org/10.1016/j.placenta.2014.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zadora J., Singh M., Herse F., Przybyl L., Haase N., Golic M., Yung H.W., Huppertz B., Cartwright J.E., Whitley G., Johnsen G.M., Levi G., Isbruch A., Schulz H., Luft F.C., et al. 2017. Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker. Circulation. 136 (19), 1824–1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kaartokallio T., Wang J., Heinonen S., Kajantie E., Kivinen K., Pouta A., Gerdhem P., Jiao H., Kere J., Laivuori H. 2016. Exome sequencing in pooled DNA samples to identify maternal pre-eclampsia risk variants. Sci. Rep. 6, 29085. https://doi.org/10.1038/srep29085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Rienzo A., Hudson R.R. 2005. An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet. 21(11), 596–601. https://doi.org/10.1016/j.tig.2005.08.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-13045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Serebrova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study was approved by the Ethics Committee at the Institute of Medical Genetics (Tomsk). Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by T. Tkacheva

Abbreviations: PE, preeclampsia; SNP, single nucleotide polymorphism; rSNP, regulatory SNP; DEG, differentially expressed gene; HWE, Hardy–Weinberg equilibrium; AA, ancestral allele; TF, transcription factor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebrova, V.N., Trifonova, E.A. & Stepanov, V.A. Natural Selection as a Driver for the Genetic Component of Preeclampsia. Mol Biol 55, 381–397 (2021). https://doi.org/10.1134/S0026893321020308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020308

Keywords:

Navigation