Skip to main content
Log in

Cross-Talk of the Glutamate and Leptin Receptor Pathways

  • STRUCTURAL–FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The hormone leptin is produced in adipocytes of white adipose tissue and crosses the blood–brain barrier. Leptin receptors are present in the brain regions that are involved in higher cognitive functions. In particular, leptin directly influences the glutamate receptor trafficking in CA3 → CA1 synapses to increase the phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) level, which is controlled by phosphoinositide 3-kinase (PI3K). It is well recognized that glutamate receptor trafficking involves at least some components of the insulin signaling cascade. However, the effects of leptin and insulin hormones differ at the cell and behavioral levels and often oppose each other. The domain organization of synaptic proteins was analyzed for CA1 field neurons. A molecular mechanism of leptin effects in the hippocampus was assumed to involve a cross-talk of the molecular pathways of the leptin receptors and NMDA-type glutamate receptors. Non-receptor protein kinases of the Src subfamily and, in particular, kinase Fyn are part of glutamate receptor macrocomplexes and are involved in regulating the efficiency of synaptic transmission. Fyn was assumed to utilize its SH2 domain to interact with leptin receptors directly or through other proteins and contribute to leptin signaling through the PI3K signaling pathway. The hypothesis explains experimental findings and sheds further light on the fine tuning of hormone-dependent modulation of hippocampal synaptic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Proskura A.L., Ratushnyak A.S., Vechkapova S.O., Zapara T.A. 2018. Synapse as a multi-component and multi-level information system. Stud. Comput. Intell. 736, 186–192.

    Google Scholar 

  2. Lathe R. 2001. Hormones and the hippocampus. J. Endocrinol. 169 (2), 205–231.

    Article  CAS  Google Scholar 

  3. Oomura Y., Hori N., Shiraishi T., Fukunaga K., Takeda H., Tsuji M., Matsumiya T., Ishibashi M., Aou S., Li X.L., Kohno D., Uramura K., Sougawa H., Yada T., Wayner M.J., Sasaki K. 2006. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides. 27, 2738–2749.

    Article  CAS  Google Scholar 

  4. Van Doorn Y.C., Macht V.A., Grillo C.A., Reagan L.P. 2017. Leptin resistance and hippocampal behavioral deficits. Physiol. Behav. 176, 207–213.

    Article  CAS  Google Scholar 

  5. McGregor G., Clements L., Farah A., Irving A.J., Harvey J. 2018. Age-dependent regulation of excitatory synaptic transmission at hippocampal temporoammonic-CA1 synapses by leptin. Neurobiol. Aging. 69, 76–93.

    Article  CAS  Google Scholar 

  6. Harvey J., Solovyova N., Irving A. 2006. Leptin and its role in hippocampal synaptic plasticity. Prog. Lipid Res. 45 (5), 369–378.

    Article  CAS  Google Scholar 

  7. O’Malley D., Irving A.J., Harvey J. 2005. Leptin-induced dynamic alterations in the actin cytoskeleton mediate the activation and synaptic clustering of BK channels. FASEB J. 19 (13), 1917–1919.

    Article  Google Scholar 

  8. Shanley L.J., O’Malley D., Irving A.J., Ashford M.L., Harvey J. 2002. Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J. Physiol. 545 (3), 933–944.

    Article  CAS  Google Scholar 

  9. Frühbeck G. 2006. Intracellular signalling pathways activated by leptin. Biochem. J. 393, 7–20.

    Article  Google Scholar 

  10. Bliss T.V., Collingridge G.L. 1993. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 361, 31–39.

    Article  CAS  Google Scholar 

  11. Ananko E.A., Podkolodny N.L., Stepanenko I.L., Podkolodnaya O.A., Rasskazov D.A., Miginsky D.S., Likhoshvai V.A., Ratushny A.V., Podkolodnaya N.N., Kolchanov N.A. 2005. GeneNet in 2005. Nuceic. Acids Res. 33, 425–427.

    Article  Google Scholar 

  12. Kolchanov N.A., Voevoda M.I., Kuznetsova T.N., Mordvinov V.A., Ignat’eva E.V. 2006. Gene netrorks of lipid metabolism. Byull. Sib. Otd. Ross. Akad. Med. Nauk. 2, 29–42.

    Google Scholar 

  13. Proskura A.L., Malakhin I.A., Turnaev I.I., Suslov V.V., Zapara T.A., Ratushnyak A.S. 2013. Intermolecular interactions in the functional systems of neuron. Vavilov. Zh. Genet. Selekts. 17, 620–628.

    Google Scholar 

  14. Proskura A.L., Ratushnyak A.S., Zapara T.A. 2014. The protein–protein interaction networks of dendritic spines in the early phase of long-term potentiation. J. Comput. Sci. Syst. Biol. 7, 40–44.

    Google Scholar 

  15. Zapara T.A., Romashchenko A.V., Proskura A.L., Ratushnyak A.S. 2018. Effect of physical activity on the structural asymmetry of the mouse hippocampus. Vavilov. Zh. Genet. Selekts. 22 (8), 1084–1089.

    Google Scholar 

  16. Rameh L.E., Cantley L.C. 1999. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274 (13), 8347–8350.

    Article  CAS  Google Scholar 

  17. Sakagami H. 2008. The EFA6 family: Guanine nucleotide exchange factors for ADP ribosylation factor 6 at neuronal synapses. Tohoku J. Exp. Med. 214 (3), 191–198.

    Article  CAS  Google Scholar 

  18. Sakagami H., Honma T., Sukegawa J., Owada Y., Yanagisawa T., Kondo H. 2007. Somatodendritic localization of EFA6A, a guanine nucleotide exchange factor for ADP-ribosylation factor 6, and its possible interaction with alpha-actinin in dendritic spines. Eur. J. Neurosci. 25 (3), 618–628.

    Article  Google Scholar 

  19. Krauss M., Kinuta M., Wenk M.R., De Camilli P., Takei K., Haucke V. 2003. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J. Cell. Biol. 162 (1), 113–124.

    Article  CAS  Google Scholar 

  20. Newpher T.M., Ehlers M.D. 2008. Glutamate receptor dynamics in dendritic microdomains. Neuron. 58, 472–497.

    Article  CAS  Google Scholar 

  21. Traub L.M. 2003. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell. Biol. 163 (2), 203–208.

    Article  CAS  Google Scholar 

  22. Fernández-Monreal M., Sánchez-Castillo C., Esteban J.A. 2016. APPL1 gates long-term potentiation through its plekstrin homology domain. J. Cell. Sci. 129(14), 2793–2803.

    PubMed  Google Scholar 

  23. Chesnokova E.A., Kolosov P.M. 2016. Local protein synthesis in dendritic endings and its regulation in te norm and upon plastic alterations. Zh. Vyssh. Nerv. Deyat. 66 (2), 163–180.

    CAS  Google Scholar 

  24. Moult P.R., Cross A., Santos S.D., Carvalho A.L., Lindsay Y., Connolly C.N., Irving A.J., Leslie N.R., Harvey J. 2010. Leptin regulates AMPA receptor trafficking via PTEN inhibition. J. Neurosci. 30, 4088–4101.

    Article  CAS  Google Scholar 

  25. Maehama T., Dixon J.E. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273 (22), 13375–13378.

    Article  CAS  Google Scholar 

  26. Al-Khouri A.M., Ma Y., Togo S.H., Williams S., Mustelin T. 2005. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J. Biol. Chem. 280 (42), 35195–35202.

    Article  CAS  Google Scholar 

  27. Abbott M.A., Wells D.G., Fallon J.R. 1999. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci. 19 (17), 7300–7308.

    Article  CAS  Google Scholar 

  28. Yu J., Zhang Y., McIlroy J., Rordorf-Nikolic T., Orr G.A., Backer J.M. 1998. Regulation of the p85/p110 phosphatidylinositol 3'-kinase: Stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol. 18 (3), 1379–1387.

    Article  CAS  Google Scholar 

  29. Pawson T., Nash P. 2000. Protein–protein interactions define specificity in signal transduction. Genes Dev. 14 (9), 1027–1047.

    Article  CAS  Google Scholar 

  30. Salter M.W. 1998. Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem. Pharmacol. 56 (7), 789–798.

    Article  CAS  Google Scholar 

  31. Grant S.G., O’Dell T.J., Karl K.A., Stein P.L., Soriano P., Kandel E.R. 1992. Impaired long-term potentiation, spatial learning, and hippocampal development in Fyn mutant mice, Science. 258 (5090), 1903–1910.

    Article  CAS  Google Scholar 

  32. Brigidi G.S., Santyr B., Shimell J., Jovellar B., Bamji S.X. 2015. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat. Commun. 6, 8200.

    Article  Google Scholar 

  33. Bland T., Zhu M., Dillon C., Sahin G.S., Rodriguez-Llamas J.L., Appleyard S.M., Wayman G.A. 2020. Leptin controls glutamatergic synaptogenesis and NMDA-receptor trafficking via Fyn kinase regulation of NR2B. Endocrinology. 161 (2), bqz030.

    Article  Google Scholar 

  34. Brigidi G.S., Sun Y., Beccano-Kelly D., Pitman K., Mobasser M., Borgland S.L., Milnerwood A.J., Bamji S.X. 2014. Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat. Neurosci. 17 (4), 522–532.

    Article  CAS  Google Scholar 

  35. Bhat R.V., Shanley J., Correll M.P., Fieles W.E., Keith R.A., Scott C.W., Lee C.M. 2000. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc. Natl. Acad. Sci. U. S. A. 97 (20), 11074–11079.

    Article  CAS  Google Scholar 

  36. Wei J., Liu W., Yan Z. 2010. Regulation of AMPA receptor trafficking and function by glycogen synthase kinase 3. J. Biol. Chem. 285 (34), 26369–26376.

    Article  CAS  Google Scholar 

  37. Donald S., Hill K., Lecureuil C., Barnouin R., Krugmann S., John Coadwell W., Andrews S.R., Walker S.A., Hawkins P.T., Stephens L.R., Welch H.C. 2004. P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Lett. 572, 172–176.

    Article  CAS  Google Scholar 

  38. Huang C.C., Lee C.C., Hsu K.S. 2004. An investigation into signal transduction mechanisms involved in insulin-induced long-term depression in the CA1 region of the hippocampus. J. Neurochem. 89 (1), 217–231.

    Article  CAS  Google Scholar 

Download references

Funding

The work utilized the materials obtained in a basic research project of the Russian Academy of Sciences (project no. VI.35.2.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Proskura.

Ethics declarations

The authors declare that they have no conflict of interest. This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: NMDA, N-methyl D-aspartate; AMPA, α‑amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDAR, NMDA receptor; AMPAR, AMPA receptor; LTP, long-term potentiation; GluR1 and GluR2/3, AMPAR subunits; IRS, insulin receptor substrate; PI3K, phosphoinositide 3-kinase; PKB, protein kinase B; PKC, protein kinase C; PI5K, phosphoinositide 5-kinase; p85 and p110, regulatory and catalytic subunits of PI3K, respectively; Fyn, non-receptor tyrosine protein kinase of the Src subfamily; SH3 and SH2, Src-like homology domains 3 and 2, respectively; PI4P, phosphatidylinositol 4-phosphate; PI(3,4,5)P3, phosphatidylinositol 3,4,5-triphosphate; PI(4,5)P2, phosphatidylinositol 4,5-diphosphate; Jak2, Janus kinase 2; CK2, casein kinase 2; SHP2, tyrosine phosphatase 2; STAT3 and STAT5, signal transducers and activators of transcription 3 and 5, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskura, A.L., Islamova, M.Y. & Vechkapova, S.O. Cross-Talk of the Glutamate and Leptin Receptor Pathways. Mol Biol 55, 441–448 (2021). https://doi.org/10.1134/S0026893321020291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020291

Keywords:

Navigation