Skip to main content
Log in

The SAGA Deubiquitinilation (DUB) Module Participates in Pol III-Dependent Transcription

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

SAGA, the multicomponent complex responsible for acetylation of histone N-terminal lysine residues, is involved in the transcription activation of a wide range of eukaryote genes. SAGA contains a protein module, DUB, which is responsible for histone deubiquitination. In this paper we show that the DUB module may be found within cells independently of SAGA. In the absence of SAGA, the DUB module may be recruited to the promoters of Pol III-transcribed genes, but not to the Pol II-dependent promoters. The DUB module is required to recruit transcription factor Brf1, a subunit of the Pol III-recruiting TFIIIB complex, to the promoters of Pol III-dependent genes. The DUB-module interacts with Pol III in vivo. The DUB-module is essential for recruiting both TFIIIB complexes and PBP complexes to the promoters of Pol III-dependent genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Spedale G., Timmers H., Pijnappel W. 2012. ATAC-king the complexity of SAGA during evolution. Genes Dev. 26, 527–541.

    Article  CAS  Google Scholar 

  2. Lee K.K., Sardiu M.E., Swanson S.K., Gilmore J.M., Torok M., Grant P.A., Florens L., Workman J.L., Washburn M.P. 2011. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol. Systems Biol. 7, 503.

    Article  Google Scholar 

  3. Helmlinger D., Marguerat S., Villén J., Swaney D.L., Gygi S.P., Bähler J., Winston F. 2011. Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J. 30, 2843–2852.

    Article  CAS  Google Scholar 

  4. Nagy Z., Tora L. 2007. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 26, 5341–5357.

    Article  CAS  Google Scholar 

  5. Hong L., Schroth G.P., Matthews H.R., Yau P., Bradbury E.M. 1993. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 ‘tail’ to DNA. J. Biol. Chem. 268, 305–314.

    Article  CAS  Google Scholar 

  6. Kouzarides T. 2007. Chromatin modifications and their function. Cell. 128, 693–705.

    Article  CAS  Google Scholar 

  7. Henry K.W., Wyce A., Lo W.-S., Duggan L.J., Emre N.C.T., Kao C.-F., Pillus L., Shilatifard A., Osley M.A., Berger S.L. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648–2663.

    Article  CAS  Google Scholar 

  8. Köhler A., Pascual-García P., Llopis A., Zapater M., Posas F., Hurt E., Rodríguez-Navarro S. 2006. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol. Biol. Cell. 17, 4228–4236.

    Article  Google Scholar 

  9. Zhang X.-Y., Varthi M., Sykes S.M., Phillips C., Warzecha C., Zhu W., Wyce A., Thorne A.W., Berger S.L., McMahon S.B. 2008. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol. Cell. 29, 102–111.

    Article  Google Scholar 

  10. Lang G., Bonnet J., Umlauf D., Karmodiya K., Koffler J., Stierle M., Devys D., Tora L. 2011. The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol. Cell. Biol. 31, 3734–3744.

    Article  CAS  Google Scholar 

  11. Zhao Y., Lang G., Ito S., Bonnet J., Metzger E., Sawatsubashi S., Suzuki E., Le Guezennec X., Stunnenberg H.G., Krasnov A., Georgieva S.G., Schule R., Takeyama K.-I., Kato S., Tora L., Devys D. 2008. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol. Cell. 29, 92–101.

    Article  CAS  Google Scholar 

  12. Kohler A., Zimmerman E., Schneider M., Hurt E., Zheng N. 2010. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell. 141, 606–617.

    Article  Google Scholar 

  13. Samara N.L., Datta A.B., Berndsen C.E., Zhang X., Yao T., Cohen R.E., Wolberger C. 2010. Structural insights into the assembly and function of the SAGA deubiquitinating module. Science (N.Y.). 328, 1025–1029.

    Article  CAS  Google Scholar 

  14. Han Y., Luo J., Ranish J., Hahn S. 2014. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J. 33, 2534–2546.

    Article  CAS  Google Scholar 

  15. Lee K.K., Swanson S.K., Florens L., Washburn M.P., Workman J.L. 2009. Yeast Sgf73/ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenet. Chromatin. 2, 2.

    Article  Google Scholar 

  16. Morgan M.T., Haj-Yahya M., Ringel A.E., Bandi P., Brik A., Wolberger C. 2016. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science (N.Y.). 351, 725–728.

    Article  CAS  Google Scholar 

  17. Gurskiy D., Orlova A., Vorobyeva N., Nabirochkina E., Krasnov A., Shidlovskii Y., Georgieva S., Kopytova D. 2012. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res. 40, 86–96.

    Article  Google Scholar 

  18. Popova V.V., Orlova A.V., Kurshakova M.M., Nikolenko J.V., Nabirochkina E.N., Georgieva S.G., Kopytova D.V. 2018. The role of SAGA coactivator complex in snRNA transcription. Cell Cycle. 17, 1859–1870.

    Article  CAS  Google Scholar 

  19. Hung K.-H., Stumph W.E. 2011. Regulation of snRNA gene expression by the Drosophila melanogaster small nuclear RNA activating protein complex (DmSNAPc). Crit. Rev. Biochem. Mol. Biol. 46, 11–26.

    Article  CAS  Google Scholar 

  20. Schramm L., Hernandez N. 2002. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620.

    Article  CAS  Google Scholar 

  21. Schramm L., Pendergrast P.S., Sun Y., Hernandez N. 2000. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev. 14, 2650–2663.

    Article  CAS  Google Scholar 

  22. Leśniewska E., Boguta M. 2017. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol. 7, 2.

    Article  Google Scholar 

  23. Jawdekar G.W., Henry R.W. 2008. Transcriptional regulation of human small nuclear RNA genes. Biochim. Biophys. Acta. 1779, 295–305.

    Article  CAS  Google Scholar 

  24. Janson L., Weller P., Pettersson U. 1989. Nuclear factor I can functionally replace transcription factor Sp1 in a U2 small nuclear RNA gene enhancer. J. Mol. Biol. 205, 387–396.

    Article  CAS  Google Scholar 

  25. Boyd D.C., Greger I.H., Murphy S. 2000. In vivo footprinting studies suggest a role for chromatin in transcription of the human 7SK gene. Gene. 247, 33–44.

    Article  CAS  Google Scholar 

  26. Boyd D.C., Pombo A., Murphy S. 2003. Interaction of proteins with promoter elements of the human U2 snRNA genes in vivo. Gene. 315, 103–112.

    Article  CAS  Google Scholar 

  27. Stünkel W., Kober I., Seifart K.H. 1997. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17, 4397–4405.

    Article  Google Scholar 

  28. Zhao X., Pendergrast P.S., Hernandez N. 2001. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell. 7, 539–549.

    Article  CAS  Google Scholar 

  29. Kenneth N.S., Ramsbottom B.A., Gomez-Roman N., Marshall L., Cole P.A., White R.J. 2007. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl. Acad. Sci. U. S. A. 104, 14917–14922.

    Article  CAS  Google Scholar 

  30. Georgieva S., Nabirochkina E., Dilworth F.J., Eickhoff H., Becker P., Tora L., Georgiev P., Soldatov A. 2001. The novel transcription factor e(y)2 interacts with TAF(II)40 and potentiates transcription activation on chromatin templates. Mol. Cell. Biol. 21, 5223–5231.

    Article  CAS  Google Scholar 

  31. Kurshakova M.M., Krasnov A.N., Kopytova D.V., Shidlovskii Y.V., Nikolenko J.V., Nabirochkina E.N., Spehner D., Schultz P., Tora L., Georgieva S.G. 2007. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J. 26, 4956–4965.

    Article  CAS  Google Scholar 

  32. Boehm A.K., Saunders A., Werner J., Lis J.T. 2003. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell Biol. 23, 7628–7637.

    Article  CAS  Google Scholar 

  33. Vorobyeva N.E., Soshnikova N.V., Nikolenko J.V., Kuzmina J.L., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. 2009. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc. Natl. Acad. Sci. U. S. A. 106, 11049–11054.

    Article  CAS  Google Scholar 

  34. Clemens J.C., Worby C.A., Simonson-Leff N., Muda M., Maehama T., Hemmings B.A., Dixon J.E. 2000. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. U. S. A. 97, 6499–6503.

    Article  CAS  Google Scholar 

  35. Li X., Seidel C.W., Szerszen L.T., Lange J.J., Workman J.L., Abmayr S.M. 2017. Enzymatic modules of the SAGA chromatin-modifying complex play distinct roles in Drosophila gene expression and development. Genes Dev. 31, 1588–1600.

    Article  CAS  Google Scholar 

  36. Kopytova D.V., Orlova A.V., Krasnov A.N., Gurskiy D.Y., Nikolenko J.V., Nabirochkina E.N., Shidlovskii Y.V., Georgieva S.G. 2010. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev. 24, 86–96.

    Article  CAS  Google Scholar 

  37. Park J.-L., Lee Y.-S., Kunkeaw N., Kim S.-Y., Kim I.-H., Lee Y.S. 2017. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics. 9, 171–187.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Center for Collective Use of the IBG RAS. The authors are grateful to R.Kh. Ziganshin. for the MALDI-TOF MS analysis performed on the equipment of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS.

Funding

This work was supported by grants from the Russian Foundation for Basic Research (no. 18-04-00514 A, D.K., E.N., A.G.) and the Russian Science Foundation (no. 20-14-00269, Yu.N., Yu.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kopytova.

Ethics declarations

Conflict of interests. The authors declare they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for animal care and use have been followed.

Additional information

Abbreviations: Pol II, RNA polymerase II; Pol III, RNA polymerase III; DUB-module, deubiquitination module; HAT-module, acetyltransferase module; snRNA, small nuclear RNA; PSE, proximal sequence element; DSE, distal sequence element; PSE-binding protein complex, a complex that binds the proximal element.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolenko, J.V., Vdovina, Y.A., Fefelova, E.I. et al. The SAGA Deubiquitinilation (DUB) Module Participates in Pol III-Dependent Transcription. Mol Biol 55, 432–440 (2021). https://doi.org/10.1134/S0026893321020278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020278

Keywords:

Navigation