Skip to main content
Log in

Zbtb33 Gene Knockout Changes Transcription of the Fgf9, Fgfr3, c-Myc and FoxG1 Genes in the Developing Mouse Brain

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The transcription factor KAISO is important for proper development of animal embryos. In the cell, KAISO regulates cell division and apoptosis. KAISO is abundant in the central nervous system. Here we describe the effects of Zbtb33 gene knockout on the transcription of several genes that regulate the development of the central nervous system, including Fgf9, Fgfr3, Sox9, Sox2, c-Myc, NeuroD1 and FoxG1. These genes are related to the Wnt/β-catenin signaling pathway, which is closely connected to KAISO. Hippocampal, frontal cortical, and striatal tissue from C57BL/6j mice with a knockout in the Zbtb33 gene encoding KAISO (ZBTB33-) and wild-type mice (ZBTB33 +) were collected and profiled at different stages of development. Age-dependent and region-specific differences in the mRNA levels of the Fgf9, Fgfr3, c-Myc, FoxG1 genes in the developing brain of ZBTB33– and ZBTB33+ mice were described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chaudhary R., Pierre C.C., Nanan K., Wojtal D., Morone S., Pinelli C., Wood G.A., Robine S., Daniel J.M. 2013. The POZ-ZF transcription factor Kaiso (ZBTB33) induces inflammation and progenitor cell differentiation in the murine intestine. PLoS One. 8, e74160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park J.I., Kim S.W., Lyons J.P., Ji H., Nguyen T.T., Cho K., Barton M.C., Deroo T., Vleminckx K., Moon R.T., McCrea P.D. 2005. Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev. Cell. 8, 843–854.

    Article  CAS  PubMed  Google Scholar 

  3. Ruzov A., Dunican D.S., Prokhortchouk A., Pennings S., Stancheva I., Prokhortchouk E., Meehan R.R. 2004. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development. 131, 6185–6194.

    Article  CAS  PubMed  Google Scholar 

  4. Ruzov A., Savitskaya E., Hackett J.A., Reddington J.P., Prokhortchouk A., Madej M.J., Chekanov N., Li M., Dunican D.S., Prokhortchouk E., Pennings S., Meehan R.R. 2009. The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development. Development. 136, 729–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koh D.I., Yoon J.H., Kim M.K., An H., Kim M.Y., Hur M.W. 2013. Kaiso is a key regulator of spleen germinal center formation by repressing Bcl6 expression in splenocytes. Biochem. Biophys. Res. Commun. 442, 177–182.

    Article  CAS  PubMed  Google Scholar 

  6. Bassey-Archibong B.I., Rayner L.G., Hercules S.M., Aarts C.W., Dvorkin-Gheva A., Bramson J.L., Hassell J.A., Daniel J.M. 2017. Kaiso depletion attenuates the growth and survival of triple negative breast cancer cells. Cell Death Dis. 8, e2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prokhortchouk A., Sansom O., Selfridge J., Caballero I.M., Salozhin S., Aithozhina D., Cerchietti L., Meng F.G., Augenlicht L.H., Mariadason J.M., Hendrich B., Melnick A., Prokhortchouk E., Clarke A., Bird A. 2006. Kaiso-deficient mice show resistance to intestinal cancer. Mol. Cell. Biol. 26, 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones J., Wang H., Zhou J., Hardy S., Turner T., Austin D., He Q., Wells A., Grizzle W.E., Yates C. 2012. Nuclear Kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells. Am. J. Pathol. 181, 1836–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y., Dong Q.Z., Wang S., Xu H.T., Miao Y., Wang L., Wang E.H. 2014. Kaiso interacts with p120-catenin to regulate beta-catenin expression at the transcriptional level. PLoS One. 9, e87537.

    Article  PubMed  PubMed Central  Google Scholar 

  10. van de Ven R.A., Tenhagen M., Meuleman W., van Riel J.J., Schackmann R.C., Derksen P.W. 2015. Nuclear p120-catenin regulates the anoikis resistance of mouse lobular breast cancer cells through Kaiso-dependent Wnt11 expression. Dis. Model Mech. 8, 373–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pierre C.C., Hercules S.M., Yates C., Daniel J.M. 2019. Dancing from bottoms up: Roles of the POZ-ZF transcription factor Kaiso in cancer. Biochim. Biophys. Acta Rev. Cancer. 1871, 64–74.

    Article  CAS  PubMed  Google Scholar 

  12. Buck-Koehntop B.A., Stanfield R.L., Ekiert D.C., Martinez-Yamout M.A., Dyson H.J., Wilson I.A., Wright P.E. 2012. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc. Natl. Acad. Sci. U. S. A. 109, 15229–15234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prokhortchouk A., Hendrich B., Jorgensen H., Ruzov A., Wilm M., Georgiev G., Bird A., Prokhortchouk E. 2001. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daniel J.M., Spring C.M., Crawford H.C., Reynolds A.B., Baig A. 2002. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 30, 2911–2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhigalova N.A., Sokolov A.S., Prokhorchuk E.B., Zhenilo S.V. 2015. S100A3 is a novel target gene of Kaiso in mouse skin. Mol. Biol. (Moscow). 49 (2), 322–325.

    Article  CAS  Google Scholar 

  16. Pozner A., Terooatea T.W., Buck-Koehntop B.A. 2016. Cell-specific Kaiso (ZBTB33) regulation of cell cycle through cyclin D1 and cyclin E1. J. Biol. Chem. 291, 24538–24550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Donaldson N.S., Pierre C.C., Anstey M.I., Robinson S.C., Weerawardane S.M., Daniel J.M. 2012. Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms. PLoS One. 7, e50398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spring C.M., Kelly K.F., O’Kelly I., Graham M., Crawford H.C., Daniel J.M. 2005. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin. Exp. Cell Res. 305, 253–265.

    Article  CAS  PubMed  Google Scholar 

  19. Del Valle-Perez B., Casagolda D., Lugilde E., Valls G., Codina M., Dave N., de Herreros A.G., Dunach M. 2011. Wnt controls the transcriptional activity of Kaiso through CK1epsilon-dependent phosphorylation of p120-catenin. J. Cell. Sci. 124, 2298–2309.

    Article  CAS  PubMed  Google Scholar 

  20. Kim S.W., Park J.I., Spring C.M., Sater A.K., Ji H., Otchere A.A., Daniel J.M., McCrea P.D. 2004. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat. Cell. Biol. 6, 1212–1220.

    Article  CAS  PubMed  Google Scholar 

  21. Liebner S., Corada M., Bangsow T., Babbage J., Taddei A., Czupalla C.J., Reis M., Felici A., Wolburg H., Fruttiger M., Taketo M.M., von Melchner H., Plate K.H., Gerhardt H., Dejana E. 2008. Wnt/beta-catenin signaling controls development of the blood–brain barrier. J. Cell. Biol. 183, 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okuda T., Yu L.M., Cingolani L.A., Kemler R., Goda Y. 2007. beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc. Natl. Acad. Sci. U. S. A. 104, 13479–13484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maguschak K.A., Ressler K.J. 2012. The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology. 62, 78–88.

    Article  CAS  PubMed  Google Scholar 

  24. Chenn A., Walsh C.A. 2003. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb. Cortex. 13, 599–606.

    Article  PubMed  Google Scholar 

  25. Backman M., Machon O., Mygland L., van den Bout C.J., Zhong W., Taketo M.M., Krauss S. 2005. Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev. Biol. 279, 155–168.

    Article  CAS  PubMed  Google Scholar 

  26. Rodova M., Kelly K.F., VanSaun M., Daniel J.M., Werle M.J. 2004. Regulation of the rapsyn promoter by kaiso and delta-catenin. Mol. Cell. Biol. 24, 7188–7196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Falcone C., Filippis C., Granzotto M., Mallamaci A. 2015. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia. 63, 412–422.

    Article  PubMed  Google Scholar 

  28. Lin Y., Chen L., Lin C., Luo Y., Tsai R.Y., Wang F. 2009. Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev. Biol. 329, 44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hecht D., Zimmerman N., Bedford M., Avivi A., Yayon A. 1995. Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4. Growth Factors. 12, 223–233.

    Article  CAS  PubMed  Google Scholar 

  30. Sears R.C., Nevins J.R. 2002. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem. 277, 11617–11620.

    Article  CAS  PubMed  Google Scholar 

  31. Boyer L.A., Lee T.I., Cole M.F., Johnstone S.E., Levine S.S., Zucker J.P., Guenther M.G., Kumar R.M., Murray H.L., Jenner R.G., Gifford D.K., Melton D.A., Jaenisch R., Young R.A. 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122, 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mercurio S., Serra L., Motta A., Gesuita L., Sanchez-Arrones L., Inverardi F., Foglio B., Barone C., Kaimakis P., Martynoga B., Ottolenghi S., Studer M., Guillemot F., Frassoni C., Bovolenta P., Nicolis S.K. 2019. Sox2 acts in thalamic neurons to control the development of retina-thalamus-cortex connectivity. Science. 15, 257–273.

    CAS  Google Scholar 

  33. Mercurio S., Serra L., Nicolis S.K. 2019. More than just stem cells: Functional roles of the transcription factor Sox2 in differentiated glia and neurons. Int. J. Mol. Sci. 20, e4540.

    Article  PubMed  Google Scholar 

  34. Kang P., Lee H.K., Glasgow S.M., Finley M., Donti T., Gaber Z.B., Graham B.H., Foster A.E., Novitch B.G., Gronostajski R.M., Deneen B. 2012. Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron. 74, 79–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng L.C., Pastrana E., Tavazoie M., Doetsch F. 2009. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ambrozkiewicz M.C., Schwark M., Kishimoto-Suga M., Borisova E., Hori K., Salazar-Lazaro A., Rusanova A., Altas B., Piepkorn L., Bessa P., Schaub T., Zhang X., Rabe T., Ripamonti S., Rosario M., et al. 2018. Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140. Neuron. 100, 1097–1115, e1015.

  37. Cheng C.C., Uchiyama Y., Hiyama A., Gajghate S., Shapiro I.M., Risbud M.V. 2009. PI3K/AKT regulates aggrecan gene expression by modulating Sox9 expression and activity in nucleus pulposus cells of the intervertebral disc. J. Cell. Physiol. 221, 668–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pataskar A., Jung J., Smialowski P., Noack F., Calegari F., Straub T., Tiwari V.K. 2016. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J. 35, 24–45.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y.C., Ma N.X., Pei Z.F., Wu Z., Do-Monte F.H., Keefe S., Yellin E., Chen M.S., Yin J.C., Lee G., Minier-Toribio A., Hu Y., Bai Y.T., Lee K., Quirk G.J., Chen G. 2020. A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol. Ther. 28, 217–234.

    Article  CAS  PubMed  Google Scholar 

  40. Kumamoto T., Hanashima C. 2017. Evolutionary conservation and conversion of Foxg1 function in brain development. Dev. Growth Differ. 59, 258–269.

    Article  PubMed  Google Scholar 

  41. Hanashima C., Li S.C., Shen L., Lai E., Fishell G. 2004. Foxg1 suppresses early cortical cell fate. Science. 303, 56–59.

    Article  CAS  PubMed  Google Scholar 

  42. Kumamoto T., Toma K., Gunadi, McKenna W.L., Kasukawa T., Katzman S., Chen B., Hanashima C. 2013. FoxG1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep. 3, 931–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reemst K., Noctor S.C., Lucassen P.J., Hol E.M. 2016. The indispensable roles of microglia and astrocytes during brain development. Front. Hum. Neurosci. 10, 566.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ahlgren S., Vogt P., Bronner-Fraser M. 2003. Excess FoxG1 causes overgrowth of the neural tube. J. Neurobiol. 57, 337–349.

    Article  CAS  PubMed  Google Scholar 

  45. Hatton B.A., Knoepfler P.S., Kenney A.M., Ro-witch D.H., de Alboran I.M., Olson J.M., Eisenman R.N. 2006. N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 66, 8655–8661.

    Article  CAS  PubMed  Google Scholar 

  46. Wey A., Knoepfler P.S. 2010. C-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain. Oncotarget. 1, 120–130.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bird C.M., Burgess N. 2008. The hippocampus and memory: Insights from spatial processing. Nat. Rev. Neurosci. 9, 182–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The experimental part of the work was supported by a grant from the Russian Foundation for Basic Research (no. 18-04-00869 A, brain dissection, RNA isolation and real-time PCR) and budget project no. 0259-2021-0015 (housing and breeding animals) and was carried out using equipment belonging to the Shared Center for Genetic Resources of Laboratory Animals, Federal Research Center of ICG SB RAS, supported by the Ministry of Education and Science of Russia (Unique project identifier RFMEFI62119X0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Illarionova.

Ethics declarations

Conflict of interests. The authors declare they have no conflict of interest.

Statement on the welfare of animals. The treatment of animals was in accordance with the guidelines for the care and use of laboratory animals of the Russian National Center for Genetic Resources of Laboratory Animals in a specific pathogens free vivarium . All procedures involving animals were in accordance with the FELASA ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarionova, N.B., Borisova, M.A., Bazhenova, E.Y. et al. Zbtb33 Gene Knockout Changes Transcription of the Fgf9, Fgfr3, c-Myc and FoxG1 Genes in the Developing Mouse Brain. Mol Biol 55, 363–371 (2021). https://doi.org/10.1134/S0026893321020230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020230

Keywords:

Navigation