Skip to main content
Log in

Germline and Somatic Mutations in Archived Breast Cancer Specimens of Different Subtypes

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Molecular profiling of tumors may provide promising options for personalized treatment. We have examined the spectrum of germline and somatic mutations in 23 breast cancers (BC) of various molecular subtypes, including tumors 1) with expression of estrogen, progesterone and/or epidermal growth factor receptor HER2/neu, and 2) with a triple negative phenotype. Genomic DNA specimens were isolated from archived tumor and normal tissue samples and subjected to targeted sequencing of the coding regions of 25 cancer-associated genes with a mean coverage of ×1000. In the triple negative subtype of BC, the pathogenic germline mutations BRCA1 c.66_67delAG (185delAG) and BRCA1 c.3226_3227AG (3347delAG) were detected, while the germline mutation BRCA2 658_659del (886delGT) was found in patients with positive receptor staining. Mutations in BRCA1/2 were overrepresented by frequency (80%), pointing at common loss of heterozygosity affecting the normal allele. Somatic mutations in the TP53 gene were found in 7/10 (70%) patients with the triple negative subtype of BC and in 3/13 (23%) in the group with positive receptor staining. Additionally, in both groups of patients, somatic mutations of the PTEN, MSH2, MSH6, and MUTYH genes were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kaprin A.D., Starinskii V.V., Petrova G.V. 2019. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’ (Malignant Neoplasms in Russia in 2018: Morbidity and Mortality). Moscow: MNIOI im. P.A. Gertsena.

  2. Lyubchenko L.N., Bateneva E.I. 2014. Mediko-geneticheskoe konsul’tirovanie i DNK-diagnostika pri nasledstvennoi predraspolozhennosti k raku molochnoi zhelezy i raku yaichnikov (Medical-Genetic Consulting and DNA Diagnosis of Hereditary Predisposition to Breast and Ovarian Cancer). Moscow: IG RONTs.

  3. Ahmad A. 2019. Breast cancer statistics: Recent trends. Adv. Exp. Med. Biol. 1152, 1–7.

    Article  CAS  Google Scholar 

  4. Li N., Deng Y., Zhou L., Tian T., Yang S., Wu Y., Zheng Y., Zhai Z., Hao Q., Song D., Zhang D., Kang H., Dai Z. 2019. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: Results from the Global Burden of Disease Study 2017. J. Hematol. Oncol. 12 (1), 140.

    Article  Google Scholar 

  5. Hunter C.P. 2000. Epidemiology, stage at diagnosis, and tumor biology of breast carcinoma in multiracial and multiethnic populations. Cancer. 88 (S5), 1193–1202.

    Article  CAS  Google Scholar 

  6. Stevanovic L., Choschzick M., Moskovszky L., Varga Z. 2019. Variability of predictive markers (hormone receptors) Her2, Ki67. and intrinsic subtypes of breast cancer in four consecutive years 2015–2018. J. Cancer Res. Clin. Oncol. 145 (12), 2983–2994.

    Article  CAS  Google Scholar 

  7. González-Reymúndez A., de los Campos G., Gutiérrez L., Lunt S. Y., Vazquez A. I. 2017. Prediction of years of life after diagnosis of breast cancer using omics and omic-by-treatment interactions. Eur. J. Hum. Genet. 25 (5), 538–544.

    Article  Google Scholar 

  8. Yankaskas B.C. 2006. Epidemiology of breast cancer in young women. Breast Disease. 23 (1), 3–8.

    Article  Google Scholar 

  9. Anders C.K., Johnson R., Litton J., Phillips M., Bleyer A. 2009. Breast cancer before age 40 years. Seminars Oncol. 36 (3), 237–249.

    Article  Google Scholar 

  10. Narod S.A. 2012. Breast cancer in young women. Nat. Rev. Clin. Oncol. 9 (8), 460.

    Article  CAS  Google Scholar 

  11. Perou C.M., Sørlie T., Eisen M.B., Van De Rijn M., Jeffrey S.S., Rees C.A., Pollack J.R., Ross D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., et al. 2000. Molecular portraits of human breast tumours. Nature. 406 (6797), 747–752.

    Article  CAS  Google Scholar 

  12. Foulkes W.D., Smith I.E., Reis-Filho J.S. 2010. Triple-negative breast cancer. N. Eng. J. Med. 363 (20), 1938–1948.

    Article  CAS  Google Scholar 

  13. Ahn S.G., Kim S.J., Kim C., Jeong J. 2016. Molecular classification of triple-negative breast cancer. J. Breast Cancer. 19 (3), 223–230.

    Article  Google Scholar 

  14. Dent R., Trudeau M., Pritchard K.I., Hanna W.M., Kahn H.K., Sawka C.A., Lickley L.A., Rawlinson E., Sun P., Narod S.A. 2007. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 13 (15), 4429–4434.

    Article  Google Scholar 

  15. Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast tumours. Nature. 490 (7418), 61.

    Article  Google Scholar 

  16. Damodaran S., Sember Q.C., Arun B.K. 2020. Clinical implications of breast cancer tumor genomic testing. Breast J. 26 (8), 1565–1571.

    Article  Google Scholar 

  17. Easton D.F., Pharoah P., Antoniou A.C., Tischkowitz M., Tavtigian S.V., Nathanson K.L., Devilee P., Meindl A., Couch F.J., Southey M., Goldgar D.E., Evans D., Chenevix-Trench G., Rahman N., Robson M., et al. 2015. Gene-panel sequencing and the prediction of breast-cancer risk. N. Eng. J. Med. 372 (23), 2243–2257.

    Article  CAS  Google Scholar 

  18. Xuan J., Yu Y., Qing T., Guo L., Shi L. 2013. Next-generation sequencing in the clinic: Promises and challenges. Cancer Lett. 340 (2), 284–295.

    Article  CAS  Google Scholar 

  19. Raymond V.M., Gray S.W., Roychowdhury S., Joffe S., Chinnaiyan A.M., Parsons D.W., Plon S.E. 2016. Germline findings in tumor-only sequencing: points to consider for clinicians and laboratories. J. Natl. Cancer Inst. 108 (4), djv351. https://doi.org/10.1093/jnci/djv351

    Article  CAS  PubMed  Google Scholar 

  20. Kamio T., Kamio H., Aoki T., Ondo Y., Uchiyama T., Yamamoto-Shimojima K., Watanabe M., Okamoto T., Kanno H., Yamamoto T. 2020. Molecular profiles of breast cancer in a single institution. Anticancer Res. 40 (8), 4567–4570.

    Article  CAS  Google Scholar 

  21. Meric-Bernstam F., Brusco L., Daniels M., Wathoo C., Bailey A.M., Strong L., Shaw K., Lu K., Qi Y., Zhao H., Lara-Guerra H., Litton J., Arun B., Eterovic A.K., Aytac U., et al. 2016. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann. Oncol. 27 (5), 795–800.

    Article  CAS  Google Scholar 

  22. Abramov I.S., Emel’yanova M.A., Ryabaya O.O., Krasnov G.S., Zasedatelev A.S., Nasedkina T.V. 2019. Somatic Mutations Associated with Metastasis in Acral Melanoma. Mol. Biol. (Moscow). 53 (4), 580–585.

    Article  CAS  Google Scholar 

  23. Daly M.B., Pilarski R., Berry M., Buys S.S., Farmer M., Friedman S., Garber J.E., Kauff N.D., Khan S., Klein C., Kohlmann W., Kurian A., Litton J.K., Madlensky L., Merajver S.D., et al. 2017. NCCN guidelines insights: genetic/familial high-risk assessment: Breast and ovarian, version 2.2017. J. Natl. Comprehensive Cancer Network. 15 (1), 9–20.

    Article  CAS  Google Scholar 

  24. Nasedkina T.V., Gromyko O.E., Emel’yanova M.A., Ignatova E.O., Kazubskaya T.P., Portnoi S.M., Zasedatelev A.S., Lyubchenko L.N. 2014. Genotyping of BRCA1, BRCA2, and CHEK2 germline mutations in Russian breast cancer patients using diagnostic biochips. Mol. Biol. (Moscow). 48 (2), 207–213.

    Article  CAS  Google Scholar 

  25. Papi L., Putignano A.L., Congregati C., Zanna I., Sera F., Morrone D., Falchetti M, Turco M.R., Ottini L., Palli D., Genuardi M. 2009. Founder mutations account for the majority of BRCA1-attributable hereditary breast/ovarian cancer cases in a population from Tuscany, Central Italy. Breast Cancer Kes. Treat. 117 (3), 497–504.

    Article  CAS  Google Scholar 

  26. Heimdal K., Maehle L., Apold J., Pedersen J.C., Møller P. 2003. The Norwegian founder mutations in BRCA1: high penetrance confirmed in an incident cancer series and differences observed in the risk of ovarian cancer. Eur. J. Cancer. 39 (15), 2205–2213.

    Article  CAS  Google Scholar 

  27. Janavičius R., Rudaitis V., Mickys U., Elsakov P., Griškevičius L. 2014. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania. Cancer Genet. 207 (5), 195–205.

    Article  Google Scholar 

  28. Jakubowska A., Scott R., Menkiszak J., Gronwald J., Byrski T., Huzarski T., Górski B., Cybulski C., Debniak T., Kowalska E., Starzyńska T., Ławniczak M., Narod S., Lubinski J. 2003. A high frequency of BRCA2 gene mutations in Polish families with ovarian and stomach cancer. Eur. J. Hum. Genet, 11 (12), 955–958.

    Article  Google Scholar 

  29. Gonzalez-Angulo A.M., Timms K.M., Liu S., Chen H., Litton J.K., Potter J., Lanchbury J.S., Stemke-Hale K., Hennessy B.T., Arun B.K., Hortobagyi G.N., Do K.-A., Mills G.B., Meric-Bernstam F. 2011. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin. Cancer Res. 17 (5), 1082–1089.

    Article  CAS  Google Scholar 

  30. Wong-Brown M.W., Meldrum C.J., Carpenter J.E., Clarke C.L., Narod S.A., Jakubowska A., Rudnicka H., Lubinski J., Scott R.J. 2015. Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res. Treat. 150 (1), 71–80.

    Article  CAS  Google Scholar 

  31. National Comprehensive Cancer Network. 2010. NCCN Clinical Practice Guidelines in OncologyTM: Genetic/Familial High Risk Assessment: Breast and Ovarian VI 2010.

    Google Scholar 

  32. Fong P.C., Boss D.S., Yap T.A., Tutt A., Wu P., Mergui-Roelvink M., Mortimer P., Swaisland H., Lau A., O’Connor M.J., Ashworth A., Carmichael J., Kaye S.B., Schellens J.H.M., de Bono J.S. 2009. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Eng. J. Med. 361 (2), 123–134.

    Article  CAS  Google Scholar 

  33. Geenen J.J., Linn S.C., Beijnen J.H., Schellens J.H. 2018. PARP inhibitors in the treatment of triple-negative breast cancer. Clin. Pharmacokinet. 57 (4), 427–437.

    Article  CAS  Google Scholar 

  34. Maxwell K.N., Wubbenhorst B., Wenz B.M., De Sloover D., Pluta J., Emery L., Barrett A., Kraya A.A., Anastopoulos I.N., Yu S., Jiang Y., Chen H., Zhang N.R., Hackman N., D’Andrea K., et al. 2017. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat. Commun. 8 (1), 1–11.

    Article  CAS  Google Scholar 

  35. Olivier M., Langerød A., Carrieri P., Bergh J., Klaar S., Eyfjord J., Charles Theillet, Rodriguez C., Lidereau R., Bièche I., Varley J., Bignon Y., Uhrhammer N., Winqvist R., Jukkola-Vuorinen A., et al. 2006. The clinical value of somatic TP53 gene mutations in 1794 patients with breast cancer. Clin. Cancer Res. 12 (4), 1157–1167.

    Article  CAS  Google Scholar 

  36. Silwal-Pandit L., Vollan H.K., Chin S.F., Rueda O.M., McKinney S., Osako T., Quigley D.A., Kristensen V.N., Aparicio S., Børresen-Dale A.L., Caldas C., Langerød A. 2014. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin. Cancer Res. 20 (13), 3569–3580.

    Article  CAS  Google Scholar 

  37. Meric-Bernstam F., Zheng X., Shariati M., Damodaran S., Wathoo C., Brusco L., Demirhan M.E., Tapia C., Eterovic A.K., Basho R.K., Ueno N.T., Janku F., Sahin A, Rodon J., Broaddus R., et al. 2018. Survival outcomes by TP53 mutation status in metastatic breast cancer. JCO Precision Oncol. 2, 1–15.

    Google Scholar 

  38. Nandikolla A.G., Venugopal S., Anampa J. 2017. Breast cancer in patients with Li–Fraumeni syndrome: A case-series study and review of literature. Breast Cancer (Dove Med. Press). 9, 207–215.

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Federal Target Program “Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020” (agreement No. 05.604.21.0234, unique project identifier RFMEFI60419X0234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Nasedkina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, I.S., Korneva, Y.S., Shisterova, O.A. et al. Germline and Somatic Mutations in Archived Breast Cancer Specimens of Different Subtypes. Mol Biol 55, 354–362 (2021). https://doi.org/10.1134/S0026893321020163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020163

Keywords:

Navigation