Skip to main content
Log in

Hypoxia Accelerate β-Actin Expression through Transcriptional Activation of ACTB by Nuclear Respiratory Factor-1

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cytoskeletal protein β-actin is abundant both in the cytoplasm and the nucleus, its mRNA is commonly utilized an internal control for gene expression analysis. Recent reports demostrated that hypoxia influences the levels of β-actin in a variety of cells. The mechanism underlying this change are not yet elucidated. In this work, we show that the changes in the levels of hypoxia-induced Nuclear respiratory factor-1 (NRF-1) lead to the change in expression of β-actin. We compared the protein levels of NRF-1 and β-actin in gastric cancer and adjacent tissues and found their significantly upregulation in cancer (33% patitents). When gastric cancer cells and normal gastric cells were treated with 1% O2 for 48 h, the trends in expression levels of NRF-1 and β-actin were similar. When NRF-1 expression was modified by its overexpressing or silencing, the levels of β-actin changed accordingly. In β-actin gene (ACTB), three binding sites for NRF-1 were found. These sites are conserved in human, mouse and rat genomes. In ChIP experiments, we showed that NRF-1 directly binds to human ACTB and mouse Actb coding regions. Its seems that the transcription of β-actin encoding gene is NRF-1 dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Sturzenbaum S.R., Kille P. 2001. Control genes in quantitative molecular biological techniques: The variability of invariance. Comp. Biochem. Phys. B. 130, 281‒289

    Article  CAS  Google Scholar 

  2. Farrants A.K.O. 2008. Chromatin remodelling and actin organisation. FEBS Lett. 582, 2041‒2050.

    Article  Google Scholar 

  3. Rohn G., Koch A., Krischek B., Stavrinou P., Goldbrunner R., Timmer M. 2018. ACTB and SDHA are suitable endogenous reference genes for gene expression studies in human astrocytomas using quantitative RT-PCR. Technol. Cancer Res. Treat. 17, 1533033818802318.

    Article  Google Scholar 

  4. Yang Y., Ma L., Ge R., Fan W., Zhu L., Zhao T., Wu Y., Fan M. 2008. Effects of hypoxia on mRNA expression of housekeeping genes in rat brain tissue and primary cultured neural cells. Front. Med. China. 2, 239‒243. https://doi.org/10.1007/s11684-008-0045-7

    Article  Google Scholar 

  5. Zhong H., Simons J.W. 1999. Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem. Biophys. Res. Commun. 259, 523‒526.

    Article  CAS  Google Scholar 

  6. Bruge F., Venditti E., Tiano L., Littarru G.P., Damiani E. 2011. Reference gene validation for qPCR on normoxia- and hypoxia-cultured human dermal fibroblasts exposed to UVA: Is beta-actin a reliable normalizer for photoaging studies? J. Biotechnol. 156, 153‒162.

    Article  CAS  Google Scholar 

  7. Glass J.J., Phillips P.A., Gunning P.W., Stehn J.R. 2015. Hypoxia alters the recruitment of tropomyosins into the actin stress fibres of neuroblastoma cells. BMC Cancer. 15, 712.

    Article  Google Scholar 

  8. Haghparast S.M.A., Kihara T., Shimizu Y., Yuba S., Miyake J. 2013. Actin-based biomechanical features of suspended normal and cancer cells. J. Biosci. Bioeng. 116, 380‒385.

    Article  CAS  Google Scholar 

  9. Al Absi A., Wurzer H., Guerin C., Hoffmann C., Moreau F., Mao X.Q., Brown-Clay J., Petrolli R., Casellas C.P., Dieterle M., Thiery J.P., Chouaib S., Berchem G., Janji B., Thomas C. 2018. Actin cytoskeleton remodeling drives breast cancer cell escape from natural killer-mediated cytotoxicity. Cancer Res. 78, 5631‒5643.

    Article  CAS  Google Scholar 

  10. Tseng R.C., Chang J.W., Mao J.S., Tsai C.D., Wu P.C., Lin C.J., Lu Y.L., Liao S.Y., Cheng H.C., Hsu H.S., Wang Y.C. 2015. Growth-arrest-specific 7C protein inhibits tumor metastasis via the N-WASP/FAK/F-actin and hnRNP U/beta-TrCP/beta-catenin pathways in lung cancer. Oncotarget. 6, 44207‒44221.

    Article  Google Scholar 

  11. Liu Y., Wang Z.Y., Huang D., Wu C., Li H.H., Zhang X., Meng B., Li Z.J., Zhu T.H., Yang S., Sun W. 2017. LMO2 promotes tumor cell invasion and metastasis in basal-type breast cancer by altering actin cytoskeleton remodeling. Oncotarget. 8, 9513‒9524.

    Article  Google Scholar 

  12. Dai Q.S., Shah A.A., Garde R.V., Yonish B.A., Zhang L., Medvitz N.A., Miller S.E., Hansen E.L., Dunn C.N., Price T.M. 2013. A truncated progesteronereceptor (PR-M) localizes to the mitochondrion and controls cellular respiration. Mol. Endocrinol. 27, 741‒753.

    Article  CAS  Google Scholar 

  13. Hoppeler H., Vogt M., Weibel E.R., Fluck M. 2003. Response of skeletal muscle mitochondria to hypoxia. Exp. Physiol. 88, 109‒119.

    Article  CAS  Google Scholar 

  14. Yuan X.M., Chen C.Z., Wang L., He X. 2017. Inhibition of microRNA-182 reduces hypoxia/re-oxygenation-induced HL-1 cardiomyocyte apoptosis by targeting the nuclear respiratory factor-1/mitochondrial transcription factor A (NRF-1/mtTFA) pathway. Int. J. Clin. Exp. Pathol. 10, 5162‒5170.

    CAS  Google Scholar 

  15. Evans M.J., Scarpulla R.C. 1989. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J. Biol. Chem. 264, 14361‒14368.

    Article  CAS  Google Scholar 

  16. Virbasius C.A., Virbasius J.V., Scarpulla R.C. 1993. NRF-1, an activator involved in nuclear–mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 7, 2431‒2445.

    Article  CAS  Google Scholar 

  17. Satoh J., Kawana N., Yamamoto Y. 2013. Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Syst. Bio. 7, 139‒152.

    PubMed  PubMed Central  Google Scholar 

  18. Jayanta K.D., Quentin F., Robert P., Robert M.J., Deodutta R. 2018. Nuclear respiratory factor 1 acting as an oncoprotein drives estrogen-induced breast carcinogenesis. Cells. 7, 234.

    Article  Google Scholar 

  19. Wang D., Zhang J., Lu Y.P., Luo Q.Q., Zhu L. 2016. Nuclear respiratory factor-1 (NRF-1) regulated hypoxia-inducible factor-1 (HIF-1) under hypoxia in HEK293T. IUBMB Life. 68, 748‒755.

    Article  CAS  Google Scholar 

  20. Shafqat A.K., Monica T., Ajit K.S., Savio G.B., Bhawna S., Mukta R., Shailesh V.S., Sanjay G. 2014. Cell-type specificity of β-actin expression and its clinicopathological correlation in gastric adenocarcinoma. World J. Gastroenterol. 20, 12202‒12211.

    Article  Google Scholar 

  21. Biswas M., Chan J.Y. 2010. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharm. 244, 16‒20.

    Article  CAS  Google Scholar 

  22. Stergachis A.B., Haugen E., Shafer A., Fu W.Q., Vernot B., Reynolds A., Raubitschek A., Ziegler S., LeProust E.M., Akey J.M., Stamatoyannopoulos J.A. 2013. Exonic transcription factor binding directs codon choice and affects protein evolution. Science. 342, 1367‒1372.

    Article  CAS  Google Scholar 

  23. Turkoglu S.A., Kockar F. 2012. Expression of GAPDH, β-actin and B-2-microglobulin genes under chemically induced hypoxic conditions in Hep3b and Pc3 cells. J. Appl. Biol. Sci. 6 (3), 1‒6.

    Google Scholar 

  24. Mori R., Wang Q.C., Danenberg K.D., Pinski J.K., Danenberg P.V. 2008. Both β-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. Prostate. 68, 1555‒1560.

    Article  CAS  Google Scholar 

  25. Sant K.E., Hansen J.M., Williams L.M., Tran N.L., Goldstone J.V., Stegeman J.J., Hahn M.E., Timme-Laragy A. 2017. The role of Nrf1 and Nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo. Redox Biol. 13, 207‒218.

    Article  CAS  Google Scholar 

  26. Veselska R., Zitterbart K., Jelinkova S., Neradil J., Svoboda A. 2003. Specific cytoskeleton changes during apoptosis accompanying induced differentiation of HL-60 myeloid leukemia cells. Oncol. Rep. 10, 1049‒1058.

    PubMed  Google Scholar 

  27. Vogler M., Vogel S., Krull S., Farhat K., Leisering P., Lutz S., Wuertz C.M., Katschinski D.M., Zieseniss A. 2013. Hypoxia modulates fibroblastic architecture, adhesion and migration: A role for HIF-1alpha in cofilin regulation and cytoplasmic actin distribution. PLoS One. 8, e69128.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Dan Wang, Dr. Yapeng Lu, Dr. Zhangji Dong and Dr. Xiaomei Wu who kindly provided suggestions to the study.

Funding

The study was supported by the National Natural Science Foundation of China (31500965, 31471141, 31671206), the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD) and Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Contributions

The text was submitted by the author(s) in English.

Corresponding author

Correspondence to L. Zhu.

Ethics declarations

Ethics approval and consent to participate.

The study was approved by the Ethics Committee of the Human Research Ethics Committee of the Affiliated Hospital of Nantong University (2017-K036). Written informed consent was obtained from the patients for publication of this study.

Conflict of interest. The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: NRF-1, nuclear respiratory factor 1; ChIP, chromatin immunoprecipitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.T., Cheng, K. & Zhu, L. Hypoxia Accelerate β-Actin Expression through Transcriptional Activation of ACTB by Nuclear Respiratory Factor-1. Mol Biol 55, 398–404 (2021). https://doi.org/10.1134/S0026893321020011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020011

Keywords:

Navigation