Skip to main content

The Role of Natural Selection in the Formation of the Genetic Structure of Populations by SNP Markers in Association with Body Mass Index and Obesity

Abstract—Obesity is one of the major challenges in modern society. More than a third of the world’s population suffers froms overweight. This phenotype affects the quality of life and is associated with cardiovascular diseases, diabetes, cancer and reproductive disorders. The population variability of allele frequencies of 26 single nucleotide polymorphisms, in association with obesity and body mass index, according to data from genome-wide association studies (GWASs) is discussed in this study. Genetic variability was analyzed in populations of Northern Eurasia and populations from the human genome diversity project (HGDP). The population samples are characterized by high genetic diversity that correlates with climatic and geographical parameters. The results of the test for searching for natural selection signals revealed a selection effect for rs1167827 of the HIP1 gene, rs7138803 and rs7164727 located in the intergenic region, rs7141420 of the NRXN3 gene, rs7498665 of the SH2B1 gene, and rs7903146 of the TCF7L2 gene.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Boden G. 2008. Obesity and free fatty acids. Endocrinol. Metab. Clin. North Am. 37 (3), 635–646.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Turula M., Kaprio J., Rissanen A., Koskenvuo M. 1990. Body weight in the Finnish Twin Cohort. Diabetes Res. Clin. Pract. 10, S33–S36.

    PubMed  Article  Google Scholar 

  3. Wardle J., Carnell S., Haworth C.M., Plomin R. 2008. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr.87, 398–404.

    CAS  PubMed  Article  Google Scholar 

  4. GWAS Catalog. https://www.ebi.ac.uk/gwas/ Accessed September 20, 2018.

  5. Neel J.V. 1999. The “thrifty genotype” in 1998. Nutr. Rev. 57, S2–S9.

    CAS  PubMed  Article  Google Scholar 

  6. Speakman J.R. 2008. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: The “drifty gene” hypothesis. Int. J. Obes. (Lond.). 32, 1611–1617.

    CAS  Article  Google Scholar 

  7. Sellayah D., Cagampang F.R., Cox R.D. 2014. On the evolutionary origins of obesity: A new hypothesis. Endocrinology. 155, 1573–1588.

    PubMed  Article  CAS  Google Scholar 

  8. Berndt S.I., Gustafsson S., Mägi R.; GIANT Consortium. 2013. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Locke A.E., Kahali B., Berndt S.I.; GIANT Consortium. 2015. Genetic studies of body mass index yield new insights for obesity biology. Nature. 518, 197–206.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Felix J.F., Bradfield J.P., Monnereau C.; GIANT Consortium. 2016. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 25, 389–403.

    CAS  PubMed  Article  Google Scholar 

  11. Justice A.E., Winkler T.W., Feitosa M.F.; GIANT Consortium. 2017. Genome-wide meta-analysis of 241 258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat. Commun. 8, 14977.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Akiyama M., Okada Y., Kanai M.; GIANT Consortium. 2017. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 49, 1458–1467.

    CAS  PubMed  Article  Google Scholar 

  13. Graff M., Scott R.A., Justice A.E.; GIANT Consortium. 2017. Genome-wide physical activity interactions in adiposit: A meta-analysis of 200452 adults. PLoS Genet. 13, e1006528.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Warrington N.M., Howe L.D., Paternoster L.; GIANT Consortium. 2015. A genome-wide association study of body mass index across early life and childhood. Int. J. Epidemiol. 44, 700–712.

    PubMed  PubMed Central  Article  Google Scholar 

  15. Speliotes E.K., Willer C.J., Berndt S.I.; GIANT Consortium. 2010. Association analyses of 249 796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Graff M., Ngwa J.S., Workalemahu T., Homuth G., Schipf S., Teumer A., Völzke H., Wallaschofski H., Abecasis G.R., Edward L., Francesco C., Sanna S., Scheet P., Schlessinger D., Sidore C., et al. 2013. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum. Mol. Genet. 22, 3597–3607.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Wen W., Zheng W., Okada Y.; GIANT Consortium. 2014. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 23, 5492–5504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Thorleifsson G., Walters G.B., Gudbjartsson D.F., Steinthorsdottir V., Sulem P., Helgadottir A., Styrkarsdottir U., Gretarsdottir S., Thorlacius S., Jonsdottir I., Jonsdottir T., Olafsdottir E.J., Olafsdottir G.H., Jonsson T., Jonsson F., et al. 2009. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24.

    CAS  PubMed  Article  Google Scholar 

  19. Wheeler E., Huang N., Bochukova E.G., Keogh J.M., Lindsay S., Garg S., Henning E., Blackburn H., Loos R.J., Wareham N.J., O’Rahilly S., Hurles M.E., Barroso I., Farooqi I.S. 2013. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat. Genet. 45, 513–517.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Comuzzie A.G., Cole S.A., Laston S.L., Voruganti V.S., Haack K., Gibbs R.A., Butte N.F. 2012. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One. 7, e51954.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Willer C.J., Speliotes E.K., Loos R.J.; GIANT Consortium. 2009. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41 (1), 25–34.

    CAS  PubMed  Article  Google Scholar 

  22. Ng M.C.Y., Graff M., Lu Y.; GIANT Consortium. 2017. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet. 13, e1006719.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Namjou B., Keddache M., Marsolo K., Wagner M., Lingren T., Cobb B., Perry C., Kennebeck S., Holm I.A., Li R., Crimmins N.A., Martin L., Solti I., Kohane I.S., Harley J.B. 2013. EMR-linked GWAS study: investigation of variation landscape of loci for body mass index in children. Front. Genet. 4, 268.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Cotsapas C., Speliotes E.K., Hatoum I.J., Greenawalt D.M., Dobrin R., Lum P.Y., Suver C., Chudin E., Kemp D., Reitman M., Voight B.F., Neale B.M., Schadt E.E., Hirschhorn J.N., Kaplan L.M., Daly M.J.; GIANT Consortium. 2009. Common body mass index-associated variants confer risk of extreme obesity. Hum. Mol. Genet. 18, 3502–3507.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Stepanov V.A., Trifonova E.A. 2013. Multiplex SNP genotyping by MALDI-TOF mass spectrometry: Frequencies of 56 immune response gene SNPs in human populations. Mol. Biol. (Moscow). 47 (6), 852–862.

    CAS  Article  Google Scholar 

  26. Weatherbase. https://www.weatherbase.com/ Accessed December 2, 2018.

  27. https://www.rosminzdrav.ru/ministry/61/22/stranitsa-979/ statisticheskie-informatsionnye-materialy/statisticheskiy-sbornik-2017-god. Accessed November 20, 2018.

  28. World Health Organization. https://www.who.int/ru Accessed November 17, 2018.

  29. Arlequin ver 3.5.2.2. http://cmpg.unibe.ch/software/ arlequin35/ Accessed November 2, 2018.

  30. String. https://string-db.org/ Accessed July 1, 2019.

  31. WEB-Based Gene Set Analysis Toolkit. http:// www.webgestalt.org/ Accessed July 1, 2019.

  32. Stepanov V.A. 2016. Evolution of genetic diversity and human diseases. Russ. J. Genet.52 (7), 746–756.

    CAS  Article  Google Scholar 

  33. Stepanov V.A., Kharkov V.N., Vagaitseva K.V., Bocharova A.V., Kazantsev A.Yu., Popovich A.A., Khitrinskaya I.Yu. 2017. Search for genetic markers of climatic adaptation in populations of North Eurasia. Russ. J. Genet.53 (11), 1172–1183.

    CAS  Article  Google Scholar 

  34. Stepanov V.A., Candelaria P., Khoo S., Zhang G., Trifonova E.A., Simonova K.V., Bocharova A.V., Laing I.A., Hayden C., Backer V., Bjerregaard P., Lynch N., Hagel I., Musk A.W., Bittles A., et al. 2013. Immune response decanalization in the resettlement of modern humans: The relationship of genetic diversity in the genes of the immune system with climatic and geographical factors. Med. Genet.12, 8–18.

    Google Scholar 

  35. Hanoune J., Defer N. 2001. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol. 41, 145–174.

    CAS  PubMed  Article  Google Scholar 

  36. Lukyanova L.D. 2004. Role of bioenergetic disturbances in the pathogenesis of hypoxia. Patol. Fiziol. Eksp. Terap.2, 2–11.

    Google Scholar 

  37. Levin Yu.M. 2006. Proryv v endoekologicheskuyu meditsinu. Novyi uroven’ vrachebnogo myshleniya i effektivnoi terapii (A Breakthrough toward Endoecologica Medicine: A New Level of Medical Thought and Effective Therapy). Moscow: Shcherbinskaya Tipografiya.

  38. Adeva-Andany M.M., Funcasta-Calderón R., Fernández-Fernández C., Castro-Quintela E., Carneiro-Freire N. 2018. Metabolic effects of glucagon in humans. J. Clin. Transl. Endocrinol. 15, 45–53.

    PubMed  PubMed Central  Google Scholar 

  39. Chesnokova N.P., Mikhailova A.B. 2006. Infektsionnyi protsess (The Infection Process). Moscow: Akademiya Estestvoznaniya.

  40. Parsons P.A. 2005. Environments and evolution: Interactions between stress, resource inadequacy and energetic efficiency. Biol. Rev. Camb. Philos Soc. 80, 589–610.

    PubMed  Article  Google Scholar 

  41. Butcher R.W., Robison G.A., Hardman J.G., Sutherland E.W. 1968. The role of cyclic AMP in hormone actions. Adv. Enzyme Regul. 6, 357–389.

    CAS  PubMed  Article  Google Scholar 

  42. Johansson H., Gylfe E., Hellman B. 1989. Cyclic AMP raises cytoplasmic calcium in pancreatic alpha 2-cells by mobilizing calcium incorporated in response to glucose. Cell Calcium. 10, 205–211.

    CAS  PubMed  Article  Google Scholar 

  43. Lee J.J., Wedow R., Okbay A.; GIANT Consortium. 2018. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet.50, 1112–1121.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., Boutin P., Vincent D., Belisle A., Hadjadj S., Balkau B., Heude B., Charpentier G., Hudson T.J., Montpetit A., et al. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 445, 881–885.

    CAS  PubMed  Article  Google Scholar 

  45. Timpson N.J., Lindgren C.M., Weedon M.N., Randall J., Ouwehand W.H., Strachan D.P., Rayner N.W., Walker M., Hitman G.A., Doney A.S., Palmer C.N., Morris A.D., Hattersley A.T., Zeggini E., Frayling T.M., McCarthy M.I. 2009. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes. 58, 505–510.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Elks C.E., Perry J.R., Sulem P.; GIANT Consortium. 2010. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077‒1085.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Xi B., Takeuchi F., Meirhaeghe A.; Kato N., Chambers J.C., Morris A.P., Cho Y.S., Zhang W., Mohlke K.L., Kooner J.S., Shu X.O., Pan H., Tai E.S., Pan H., Wu J.Y., Zhou D., Chandak G.R.; DIAGRAM Consortium; AGEN-T2D Consortium; SAT2D Consortium. 2014. Associations of genetic variants in/near body mass index-associated genes with type 2 diabetes: A systematic meta-analysis. Clin. Endocrinol. (Oxf.). 81, 702–710.

    CAS  Article  Google Scholar 

  48. Bradley S.V., Hyun T.S., Oravecz-Wilson K.I., Li L, Waldorff E.I., Ermilov A.N., Goldstein S.A., Zhang C.X., Drubin D.G., Varela K., Parlow A., Dlugosz A.A., Ross T.S. 2007. Degenerative phenotypes caused by the combined deficiency of murine HIP1 and HIP1r are rescued by human HIP1. Hum. Mol. Genet. 16, 1279–1292.

    CAS  PubMed  Article  Google Scholar 

  49. Bradley S.V., Holland E.C., Liu G.Y., Thomas D., Hyun T.S., Ross T.S. 2007. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor. Cancer Res. 67, 3609–3615.

    CAS  PubMed  Article  Google Scholar 

  50. Rao D.S., Hyun T.S., Kumar P.D., Mizukami I.F., Rubin M.A., Lucas P.C., Sanda M.G., Ross T.S. 2002. Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival. J. Clin. Invest. 110, 351–360.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Lv W.Q., Zhang X., Zhang Q., He J.Y., Liu H.M., Xia X., Fan K., Zhao Q., Shi X.Z., Zhang W.D., Sun C.Q., Deng H.W. 2017. Novel common variants associated with body mass index and coronary artery disease detected using a pleiotropic cFDR method. J. Mol. Cell Cardiol. 112, 1–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Haggerty A.F., Sarwer D.B., Schmitz K.H., Ko E.M., Allison K.C., Chu C.S. 2017. Obesity and endometrial cancer: A lack of knowledge but opportunity for intervention. Nutr. Cancer. 69, 990–995.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Rowen L., Young J., Birditt B., Kaur A., Madan A., Philipps D.L., Qin S., Minx P., Wilson R.K., Hood L., Graveley B.R. 2002. Analysis of the human neurexin genes: Alternative splicing and the generation of protein diversity. Genomics. 79, 587–597.

    CAS  PubMed  Article  Google Scholar 

  54. Lachman H.M., Fann C.S., Bartzis M., Evgrafov O.V., Rosenthal R.N., Nunes E.V., Miner C., Santana M., Gaffney J., Riddick A., Hsu C.L., Knowles J.A. 2007. Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum. Mol. Genet. 16, 1327–1334.

    CAS  PubMed  Article  Google Scholar 

  55. Kelai S., Maussion G., Noble F., Boni C., Ramoz N., Moalic J.M., Peuchmaur M., Gorwood P., Simonneau M. 2008. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. Neuroreport. 19, 751–755.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Clay S.W., Allen J., Parran T. 2008. A review of addiction. Postgrad. Med. 120, E01–E07.

    PubMed  Article  Google Scholar 

  57. Rapaka R., Schnur P., Shurtleff D. 2008. Obesity and addiction: Common neurological mechanisms and drug development. Physiol. Behav. 95, 2–9.

    CAS  PubMed  Article  Google Scholar 

  58. O’Brien K.B., O’Shea J.J., Carter-Su C. 2002. SH2-B family members differentially regulate JAK family tyrosine kinases. J. Biol. Chem. 277, 8673–8681.

    PubMed  Article  CAS  Google Scholar 

  59. Zhou Y., Rui L. 2013. Leptin signaling and leptin resistance. Front. Med. 7, 207–222.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Bochukova E.G., Huang N., Keogh J., Henning E., Purmann C., Blaszczyk K., Saeed S., Hamilton-Shield J., Clayton-Smith J., O’Rahilly S., Hurles M.E., Farooqi I.S. 2010. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature. 463, 666–670.

    CAS  PubMed  Article  Google Scholar 

  61. Bachmann-Gagescu R., Mefford H.C., Cowan C., Glew G.M., Hing A.V., Wallace S., Bader P.I., Hamati A., Reitnauer P.J., Smith R., Stockton D.W., Muhle H., Helbig I., Eichler E.E., et al. 2010. Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genet. Med. 12, 641–647.

    PubMed  Article  Google Scholar 

  62. Sampson M.G., Coughlin C.R., Kaplan P., Conlin L.K., Meyers K.E, Zackai E.H., Spinner N.B., Copelovitch L. 2010. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am. J. Med. Genet. A.152A, 2618–2622.

    CAS  PubMed  Article  Google Scholar 

  63. Grant S.F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., Helgason A., Stefansson H., Emilsson V., Helgadottir A., Styrkarsdottir U., Magnusson K.P., Walters G.B., Palsdottir E., Jonsdottir T., et al. 2006. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323.

    CAS  PubMed  Article  Google Scholar 

  64. Haupt A., Thamer C., Heni M., Ketterer C., Machann J., Schick F., Machicao F., Stefan N., Claussen C.D., Häring H.U., Fritsche A., Staiger H. 2010. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes. 59, 747–750.

    CAS  PubMed  Article  Google Scholar 

  65. Lopez J.P., Lim R., Cruceanu C., Crapper L., Fasano C., Labonte B., Maussion G., Yang J.P., Yerko V., Vigneault E., El Mestikawy S., Mechawar N., Pavlidis P., Turecki G. 2014. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat. Med.20, 764–768.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Du B., Zhang P., Tan Z., Xu J. 2017. MiR-1202 suppresses hepatocellular carcinoma cells migration and invasion by targeting cyclin dependent kinase 14. Biomed. Pharmacother.96, 1246–1252.

    CAS  PubMed  Article  Google Scholar 

  67. Quan Y., Song Q., Wang J., Zhao L., Lv J., Gong S. 2017. MiR-1202 functions as a tumor suppressor in glioma cells by targeting Rab1A. Tumour Biol.39 (4), 1010428317697565. https://doi.org/10.1177/1010428317697565

    CAS  Article  PubMed  Google Scholar 

  68. Botla S.K., Savant S., Jandaghi P., Bauer A.S., Mücke O., Moskalev E.A., Neoptolemos J.P., Costello E., Greenhalf W., Scarpa A., Gaida M.M., Büchler M.W., Strobel O., Hackert T., Giese N.A., et al. 2016. Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer Res.76, 4149–4159.

    CAS  PubMed  Article  Google Scholar 

  69. Ceballos F.C., Joshi P.K., Clark D.W., Ramsay M., Wilson J.F. 2018. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet.19, 220–234.

    CAS  PubMed  Article  Google Scholar 

  70. Moon J.M., Capra J.A., Abbot P., Rokas A. 2019. Signatures of recent positive selection in enhancers across 41 human tissues. G3: Genes, Genomes,Genetics.9, 2761–2774.

    CAS  Google Scholar 

  71. Choi J.H., Zhong X., McAlpine W., Liao T.C., Zhang D., Fang B., Russell J., Ludwig S., Nair-Gill E., Zhang Z., Wang K.W., Misawa T., Zhan X., Choi M., Wang T., et al. 2019. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science.364, eaau0812.

  72. Liu X., Weidle K., Schröck K., Tönjes A., Schleinitz D., Breitfeld J., Stumvoll M., Böttcher Y., Schöneberg T., Kovacs P. 2015. Signatures of natural selection at the FTO (fat mass and obesity associated) locus in human populations. PLoS One.10, e0117093.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Mao L., Fang Y., Campbell M. Southerland W.M. 2017. Population differentiation in allele frequencies of obesity-associated SNPs. BMC Genomics. 10, 861.

    Article  CAS  Google Scholar 

  74. Babenko V., Babenko R., Gamieldien J., Markel A. 2019. FTO haplotyping underlines high obesity risk for European populations. BMC Med. Genomics.12 (Suppl. 2), 46.

    PubMed  PubMed Central  Article  Google Scholar 

  75. Romieu I., Dossus L., Barquera S., Blottière H.M., Franks P.W., Gunter M., Hwalla N., Hursting S.D., Leitzmann M., Margetts B., Nishida C., Potischman N., Seidell J., Stepien M., Wang Y., et al. 2017. Energy balance and obesity: What are the main drivers? Cancer Causes Control. 28, 247–258.

    PubMed  PubMed Central  Article  Google Scholar 

  76. Souza S.A., Silva A.B., Cavalcante U.M.B., Lima C.M.B.L., Souza T.C. 2018. Adult obesity in different countries: An analysis via beta regression models. Cad Saude Publica. 34 (8), e00161417. https://doi.org/10.1590/0102-311X00161417

    Article  PubMed  Google Scholar 

  77. Dzhumagulova A.S., Polupanov A.G., Khalmatov A.N., Altymysheva A.T., Mamatov A.U., Romanova T.A. 2019. Gender and ethnic features of obesity distribution among resditents of urban and rural areas of Kyrgyzstan (based on the results of the Intrepid Project), Kardio.Vestn. 14, 61–66.

    Google Scholar 

  78. Rosenberg N.A., Kang J.T. 2015. Genetic diversity and societally important disparities. Genetics.201, 1–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. López S., van Dorp L., Hellenthal G. 2016. Human dispersal out of Africa: A lasting debate. Evol. Bioinform. Online. 11, 57–68.

    PubMed  PubMed Central  Google Scholar 

  80. Hales C.N., Barker D.J., Clark P.M., Cox L.J., Fall C., Osmond C., Winter P.D. 1991. Fetal and infant growth and impaired glucose tolerance at age 64 years. Biol. Med. J.303, 1019–1022.

    CAS  Google Scholar 

  81. Portha B., Grandjean V., Movassat J. 2019. Mother or father: Who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients. 11, E233.

    PubMed  Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out at the “Medical Genomics” Center for Collective Use (the Research Institute of Medical Genetics, Tomsk National Research Medical Center).

Funding

The study was supported by the Russian Foundation for Basic Research (project No. 18-04-00758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Trifonova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Makeeva

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trifonova, E.A., Popovich, A.A., Bocharova, A.V. et al. The Role of Natural Selection in the Formation of the Genetic Structure of Populations by SNP Markers in Association with Body Mass Index and Obesity. Mol Biol 54, 349–360 (2020). https://doi.org/10.1134/S0026893320030176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320030176

Keywords:

  • human populations
  • genetic diversity
  • obesity
  • body mass index
  • natural selection