Modification of the 5' End of mRNA Leader Sequence Alters the Set of Initiation Factors Essential for Initiation of Translation

Abstract

The abundance of noncanonical mechanisms of eukaryotic initiation of translation indicates their involvement in the regulation of protein synthesis during key events in a cell life. One of the well-known examples of a noncanonical cap-independent process is the initiation of translation of mRNA with the 5'‑untranslated (leader) region of the messenger encoding for the photoprotein obelin (the obelin leader). In the present work, mRNA with the obelin leader was modified by adding 45 deoxycytidyl nucleotides and a fluorescent label to its 5 'end. Formation of the 48S ribosomal initiation complexes at the start codon of the modified mRNA was studied using primer extension inhibition (toeprinting). In contrast to mRNA with the intact obelin leader, translation initiation of which strictly requires the eIF4F factor, initiation on the modified mRNA can take place in the absence of this factor, although with less efficiency. The finding thus indicates the unknown function of the eIF4F factor in the first step(s) of mRNA recognition by ribosomal subunits.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Kozak M. 1989. The scanning model for translation: An update. J. Cell. Biol. 108, 229–241.

    CAS  Article  Google Scholar 

  2. 2

    Jackson R.J., Hellen C.U.T., Pestova T.V. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127.

    CAS  Article  Google Scholar 

  3. 3

    Kumar P., Hellen C.U., Pestova T.V. 2016. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev. 30, 1573‒1588.

    CAS  Article  Google Scholar 

  4. 4

    Pestova T.V., Kolupaeva V.G. 2002. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes. Dev. 16, 2906–2922.

    CAS  Article  Google Scholar 

  5. 5

    Shirokikh N.E., Spirin A.S. 2008. Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc. Natl. Acad. Sci. U. S. A.2105, 10738–10743.

    Article  Google Scholar 

  6. 6

    Agalarov S.Ch., Sakharov P.A., Fattakhova D.Kh., Sogorin E.A., Spirin A.S. 2014. Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles. Sci. Rep. 4. https://doi.org/10.1038/srep04438

  7. 7

    Sakharov P.A., Agalarov S.Ch. 2016. Free initiation factors eIF4A and eIF4B are dispensable for translation initiation on uncapped mRNAs. Biochemistry (Moscow). 81 (10), 1198–1204.

    CAS  PubMed  Google Scholar 

  8. 8

    Kopeina G.S., Afonina Z.A., Gromova K.V., Shirokov V.A., Vasiliev V.D., Spirin A.S. 2008. Stepwise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res. 36, 2476–2478.

    CAS  Article  Google Scholar 

  9. 9

    Sakharov P.A., Sokolov A.S., Agalarov S.Ch. 2015. Nonhydrolyzable ATP Analog 5′-adenylyl-imidodiphosphate (AMP-PNP) does not inhibit ATP-dependent scanning of leader sequence of mRNA. Biochemistry (Moscow). 80 (1), 45–49.

    CAS  PubMed  Google Scholar 

  10. 10

    Hartz D., McPheeters D.S., Traut R., Gold L. 2007. Extension inhibition analysis of translation initiation complexes. Methods. Enzymol.164, 419–425.

    Article  Google Scholar 

  11. 11

    Gould P.S., Bird H., Easton A.J. 2005. Translation toeprinting assays using fluorescently labeled primers and capillary electrophoresis. Biotechniques.38, 397‒400.

    CAS  Article  Google Scholar 

  12. 12

    Sakharov P.A., Agalarov S.Ch. 2018. Mutant initiation factor eIF4A (R362Q) does not suppress the assembly of the 48S preinitiation complex on mRNA with the leader sequence of mRNA that encodes for obelin. Mol. Biol. (Moscow). 52 (1), 19–22.

    CAS  Article  Google Scholar 

  13. 13

    Kozak M. 1986. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. U. S. A.83, 2850‒2854.

    CAS  Article  Google Scholar 

  14. 14

    Yusupova G., Yusupov M. 2017. Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Philos. Trans. R. Soc. Lond. B. Biol. Sci.372 (1716). pii: 20160184. https://doi.org/10.1098/rstb.2016.0184

    CAS  Article  Google Scholar 

  15. 15

    Abramson R.D., Dever T.E., Lawson T.G., Ray B.K., Thach R.E., Merrick W.C. 1987. The ATP-dependent interaction of eukaryotic initiation factors with mRNA. J. Biol. Chem. 262, 3826–3832.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed at the Institute of Protein Research, Russian Academy of Sciences, Pushchino.

Funding

The methodology for detecting RNA ribosomal complexes using fluorescently labeled RNA was established with the support of the Russian Science Foundation (grant no. 19-74-20186).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolb.

Ethics declarations

The authors declare they have no conflict of interest.

The work did not use biological materials obtained from humans or animals.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakharov, P.A., Sogorin, E.A., Agalarov, S.C. et al. Modification of the 5' End of mRNA Leader Sequence Alters the Set of Initiation Factors Essential for Initiation of Translation. Mol Biol 54, 421–426 (2020). https://doi.org/10.1134/S0026893320030140

Download citation

Keywords:

  • translation initiation
  • 48S ribosomal initiation complex
  • initiation factor eIF4F
  • toeprinting