Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin

Abstract

Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    de Laat W., Duboule D. 2013. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature.502, 499‒506.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Gibcus J.H., Dekker J. 2013. The hierarchy of the 3D genome. Mol. Cell.49, 773‒782.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Harmston N., Lenhard B. 2013. Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res.41, 7185‒7199.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Krivega I., Dean A. 2012. Enhancer and promoter interactions-long distance calls. Curr. Opin. Genet. Dev.22, 79‒85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Nizovtseva E.V., Todolli S., Olson W.K., Studitsky V.M. 2017. Towards quantitative analysis of gene regulation by enhancers. Epigenomics.9, 1219‒1231.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Noordermeer D., Branco M. R., Splinter E., Klous P., van Ijcken W., Swagemakers S., Koutsourakis M., van der Spek P., Pombo A., de Laat W. 2008. Transcription and chromatin organization of a housekeeping gene cluster containing an integrated beta-globin locus control region. PLoS Genet.4, e1000016.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7

    Ringrose L., Chabanis S., Angrand P. O., Woodroofe C., Stewart A.F. 1999. Quantitative comparison of DNA looping in vitro and in vivo: Chromatin increases effective DNA flexibility at short distances. EMBO J.18, 6630‒6641.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Ghirlando R., Felsenfeld G. 2008. Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J. Mol. Biol.376, 1417‒1425.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Gilbert N., Boyle S., Fiegler H., Woodfine K., Carter N.P., Bickmore W.A. 2004. Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell.118, 555‒566.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Platani M., Goldberg I., Lamond A.I., Swedlow J.R. 2002. Cajal body dynamics and association with chromatin are ATP-dependent. Nat. Cell. Biol.4, 502‒508.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Gartenberg M.R., Neumann F.R., Laroche T., Blaszczyk M., Gasser S.M. 2004. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell.119, 955‒967.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Bellomy G.R., Record M.T., Jr. 1990. Stable DNA loops in vivo and in vitro: Roles in gene regulation at a distance and in biophysical characterization of DNA. Prog. Nucl. Acid Res. Mol. Biol.39, 81‒128.

    CAS  Article  Google Scholar 

  13. 13

    Liu Y., Bondarenko V., Ninfa A., Studitsky V.M. 2001. DNA supercoiling allows enhancer action over a large distance. Proc. Natl. Acad. Sci. U. S. A.98, 14883–14888.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Jackson J.R., Benyajati C. 1993. DNA–histone interactions are sufficient to position a single nucleosome juxtaposing Drosophila Adh adult enhancer and distal promoter. Nucleic Acids Res.21, 957‒967.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Schild C., Claret F.X., Wahli W., Wolffe A.P. 1993. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro.EMBO J.12, 423‒433.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Stein A., Dalal Y., Fleury T.J. 2002. Circle ligation of in vitro assembled chromatin indicates a highly flexible structure. Nucleic Acids Res.30, 5103‒5109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Laybourn P.J., Kadonaga J.T. 1992. Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science.257, 1682‒1685.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Rubtsov M.A., Polikanov Y.S., Bondarenko V.A., Wang Y.H., Studitsky V.M. 2006. Chromatin structure can strongly facilitate enhancer action over a distance. Proc. Natl. Acad. Sci. U. S. A.103, 17690‒17695.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Rochman M., Postnikov Y., Correll S., Malicet C., Wincovitch S., Karpova T.S., McNally J.G., Wu X., Bubunenko N.A., Grigoryev S., Bustin M. 2009. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription. Mol. Cell.35, 642‒656.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Woodcock C.L., Skoultchi A.I., Fan Y. 2006. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res.14, 17‒25.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Shimada M., Chen W.Y., Nakadai T., Onikubo T., Guermah M., Rhodes D., Roeder R.G. 2019. Gene-specific H1 eviction through a transcriptional activator → p300 → NAP1 → H1 pathway. Mol. Cell.74, 1‒16.

    Article  CAS  Google Scholar 

  22. 22

    Garcia-Saez I., Menoni H., Boopathi R., Shukla M.S., Soueidan L., Noirclerc-Savoye M., Le Roy A., Skoufias D.A., Bednar J., Hamiche A., Angelov D., Petosa C., Dimitrov S. 2018. Structure of an H1-bound 6-nucleosome array reveals an untwisted two-start chromatin fiber conformation. Mol. Cell.72, 902‒915. e7.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. 23

    Azad G.K., Ito K., Sailaja B.S., Biran A., Nissim-Rafinia M., Yamada Y., Brown D.T., Takizawa T., Meshorer E. 2018. PARP1-dependent eviction of the linker histone H1 mediates immediate early gene expression during neuronal activation. J. Cell Biol.217, 473‒481.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Polikanov Y.S., Rubtsov M.A., Studitsky V.M. 2007. Biochemical analysis of enhancer–promoter communication in chromatin. Methods.41, 250‒258.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Kulaeva O.I., Zheng G., Polikanov Y.S., Colasanti A.V., Clauvelin N., Mukhopadhyay S., Sengupta A.M., Studitsky V.M., Olson W.K. 2012. Internucleosomal interactions mediated by histone tails allow distant communication in chromatin. J. Biol. Chem.287, 20248–20257.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Goodwin G.H., Johns E.W. 1973. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem.40, 215‒219.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S. 2010. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc. Natl. Acad. Sci. U. S. A.107, 9620‒9625.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Walter W., Studitsky V.M. 2004. Construction, analysis, and transcription of model nucleosomal templates. Methods.33, 18‒24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Polach K.J., Lowary P.T., Widom J. 2000. Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J. Mol. Biol.298, 211‒223.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Polikanov Y.S., Studitsky V.M. 2009. Analysis of distant communication on defined chromatin templates in vitro.Methods Mol. Biol.543, 563‒576.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Thastrom A., Lowary P.T., Widlund H.R., Cao H., Kubista M., Widom J. 1999. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol.288, 213‒229.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Dorigo B., Schalch T., Kulangara A., Duda S., Schroeder R.R., Richmond T.J. 2004. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science.306, 1571‒1573.

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Routh A., Sandin S., Rhodes D. 2008. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. U. S. A.105, 8872‒8877.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Dorigo B., Schalch T., Bystricky K., Richmond T.J. 2003. Chromatin fiber folding: Requirement for the histone H4 N-terminal tail. J. Mol. Biol.327, 85‒96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Caterino T.L., Fang H., Hayes J.J. 2011. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain. Mol. Cell. Biol.31, 2341‒2348.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Carruthers L.M., Hansen J.C. 2000. The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem.275, 37285‒37290.

    CAS  Article  Google Scholar 

  37. 37

    Brockers K., Schneider R. 2019. Histone H1, the forgotten histone. Epigenomics.11, 363‒366.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Ding H.F., Bustin M., Hanse U. 1997. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14. Mol. Cell. Biol.17, 5843‒5855.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    O’Neil T.E., Meersseman G., Pennings S., Bradbury E.M. 1995. Deposition of histone H1 onto reconstituted nucleosome arrays inhibits both initiation and elongation of transcripts by T7 RNA polymerase. Nucleic Acids Res.23, 1075‒1082.

    Article  Google Scholar 

  40. 40

    Ninfa A.J., Magasanik B. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli.Proc. Natl. Acad. Sci. U. S. A.83, 5909‒5913.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Buck M., Cannon W. 1992. Activator-independent formation of a closed complex between sigma 54- holoenzyme and nifH and nifU promoters of Klebsiella pneumoniae.Mol. Microbiol.6, 1625‒1630.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Popham D.L., Szeto D., Keener J., Kustu S. 1989. Function of a bacterial activator protein that binds to transcriptional enhancers. Science.243, 629‒635.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Su W., Porter S., Kustu S., Echols H. 1990. DNA-looping and enhancer activity: Association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc. Natl. Acad. Sci. U. S. A.87, 5504‒5508.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Langowski J., Heermann D.W. 2007. Computational modeling of the chromatin fiber. Semin. Cell. Dev. Biol.18, 659‒667.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Gordon F., Luger K., Hansen J.C. 2005. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J. Biol. Chem.280, 33701–33706.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Bednar J., Garcia-Saez I., Boopathi R., Cutter A.R., Papai G., Reymer A., Syed S.H., Lone I.N., Tonchev O., Crucifix C., Menoni H., Papin C., Skoufias D.A., Kurumizaka H., Lavery R., et al. 2017. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol. Cell.66, 384‒397. e8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47

    Zhou B.R., Feng H., Kato H., Dai L., Yang Y., Zhou Y., Bai Y. 2013. Structural insights into the histone H1-nucleosome complex. Proc. Natl. Acad. Sci. U. S. A.110, 19390‒19395.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Fang H., Clark D.J., Hayes J.J. 2012. DNA and nucleosomes direct distinct folding of a linker histone H1 C‑terminal domain. Nucleic Acids Res.40, 1475‒1484.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Meyer S., Becker N.B., Syed S.H., Goutte-Gattat D., Shukla M.S., Hayes J.J., Angelov D., Bednar J., Dimitrov S., Everaers R. 2011. From crystal and NMR structures, footprints and cryo-electron-micrographs to large and soft structures: Nanoscale modeling of the nucleosomal stem. Nucleic Acids Res.39, 9139‒9154.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Nizovtseva E.V., Clauvelin N., Todolli S., Polikanov Y.S., Kulaeva O.I., Wengrzynek S., Olson W.K., Studitsky V.M. 2017. Nucleosome-free DNA regions differentially affect distant communication in chromatin. Nucleic Acids Res.6, 3059‒3067.

    Article  CAS  Google Scholar 

  51. 51

    Grigoryev S.A., Arya G., Correll S., Woodcock C.L., Schlick T. 2009. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proc. Natl. Acad. Sci. U. S. A.106, 13317‒13322.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Shogren-Knaak M., Ishii H., Sun J.M., Pazin M.J., Davie J.R., Peterson C.L. 2006. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science.311, 844‒847.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Robinson P.J., An W., Routh A., Martino F., Chapman L., Roeder R.G., Rhodes D. 2008. 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J. Mol. Biol.381, 816‒825.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Horn P.J., Carruthers L.M., Logie C., Hill D.A., Solomon M.J., Wade P.A., Imbalzano A.N., Hansen J.C., Peterson C.L. 2002. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat. Struct. Biol.9, 263‒267.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Zhu P., Zhou W., Wang J., Puc J., Ohgi K.A., Erdjument-Bromage H., Tempst, P., Glass C.K., Rosenfeld M.G. 2007. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell.27, 609‒621.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank T. Richmond (ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland) for the plasmid containing 601177 × 12 nucleosome positioning sequences and S. Dimitrov (Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé—Allée des Alpes, France) for intact and mutant histone H1.

Funding

This work was supported by NIH RO1GM119398 and R21CA220151 to Studitsky V.M., RO1GM34809 to W.K. Olson and by Russian Science Foundation (grant 14-24-00031). Polikanov Y.S. work was sponsored by Illinois State start-up funds, USA. Work of Y.V. Postnikov was sponsored by National Institutes of Health, National Cancer Institute, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Studitsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in this work comply with the ethical standards of the institutional committee on research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable standards of ethics. Informed consent was obtained from all individual participants involved in the study.

AUTHOR CONTRIBUTIONS

Authors E.V. Nizovtseva and Y.S. Polikanov contributed equally.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nizovtseva, E.V., Polikanov, Y.S., Kulaeva, O.I. et al. Opposite Effects of Histone H1 and HMGN5 Protein on Distant Interactions in Chromatin. Mol Biol 53, 912–921 (2019). https://doi.org/10.1134/S002689331906013X

Download citation

Keywords:

  • chromatin
  • enhancer-promotor communication
  • transcription in vitro
  • Н1
  • HMGN5