Skip to main content
Log in

Unsolved Puzzles of Qβ Replicase

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Qβ phage replicase has been the first RNA-directed RNA polymerase purified to homogeneity and intensively studied in vitro. In the mid-sixties, papers on Qβ and related replicases appeared in nearly every issue of the PNAS journal. By 1968, the mechanism of its action seemed to be almost completely understood. However, even now, a half of century later, a number of fundamental questions remains unanswered. How does the replicase manage to prevent the template and its complementary copy from annealing during the entire replication round? How does it recognize its templates? What is the function of the translation factors present in the replicase molecule? What is the mechanism the replicase uses to join (recombine) separate RNA molecules? Even the determination of the crystal structure of Qβ replicase did not help much. Certainly, there remains a lot to discover in the replication of Qβ phage, one of the smallest viruses known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. van Duin J., Tsareva N. 2006. Single-stranded RNA phages. In: The Bacteriophages, 2nd ed. Ed. Calendar R.L. New York: Oxford Univ. Press, pp. 175‒196.

  2. Haruna I., Spiegelman S. 1965. Autocatalytic synthesis of a viral RNA in vitro.Science.150, 884‒886.

    Article  CAS  PubMed  Google Scholar 

  3. August J.T., Banerjee A.K., Eoyang L, de Fernandez M.T.F., Hori K. 1968. Synthesis of bacteriophage Qβ RNA. Cold Spring Harbor Symp. Quant. Biol. 33, 73‒81.

    Article  CAS  PubMed  Google Scholar 

  4. Weissmann C., Feix G., Slor H. 1968. In vitro synthesis of phage RNA: The nature of the intermediates. Cold Spring Harbor Symp. Quant. Biol. 33, 83‒100.

    Article  CAS  PubMed  Google Scholar 

  5. Spiegelman S., Pace N.R., Mills D.R., Levisohn R., Eikhom T.S., Taylor M.M., Peterson R.L., Bishop D.H. 1968. The mechanism of RNA replication. Cold Spring Harbor Symp. Quant. Biol. 33, 101‒124.

    Article  CAS  PubMed  Google Scholar 

  6. Chetverin A.B., Chetverina H.V., Munishkin A.V. 1991. On the nature of spontaneous RNA synthesis by Qβ replicase. J. Mol. Biol. 222, 3‒9.

    Article  CAS  PubMed  Google Scholar 

  7. Belozersky A.N., Spirin A.S. 1958. A correlation between the compositions of deoxyribonucleic and ribonucleic acids. Nature. 182, 111‒112.

    Article  CAS  PubMed  Google Scholar 

  8. Chetverin A.B. 2018. Thirty years of studies of Qβ replicase: What have we learned and what is yet to be learned? Usp. Biol. Khim.58, 41‒66.

    Google Scholar 

  9. Pace N.R., Bishop D.H., Spiegelman S. 1967. The kinetics of product appearance and template involvement in the in vitro replication of viral RNA. Proc. Natl. Acad. Sci. U. S. A.58, 711‒718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feix G., Slor H., Weissmann C. 1967. Replication of viral RNA: 13. The early product of phage RNA synthesis in vitro.Proc. Natl. Acad. Sci. U. S. A.57, 1401‒1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vasilyev N.N., Kutlubaeva Z.S., Ugarov V.I., Chetverina H.V., Chetverin A.B. 2013. Ribosomal protein S1 functions as a termination factor in RNA synthesis by Qβ phage replicase. Nat. Commun. 4, 1781.

    Article  PubMed  CAS  Google Scholar 

  12. Mills D.R., Dobkin C., Kramer F.R. 1978. Template-determined, variable rate of RNA chain elongation. Cell.15, 541–550.

    Article  CAS  PubMed  Google Scholar 

  13. Priano C., Kramer F.R., Mills D.R. 1987. Evolution of the RNA coliphages: The role of secondary structures during RNA replication. Cold Spring Harbor Symp. Quant. Biol. 52, 321‒330.

    Article  CAS  PubMed  Google Scholar 

  14. Axelrod V.D., Brown E., Priano C., Mills D.R. 1991. Coliphage Qβ RNA replication: RNA catalytic for single-strand release. Virology. 184, 595–608.

    Article  CAS  PubMed  Google Scholar 

  15. Arora R., Priano C., Jacobson A.B., Mills D.R. 1996. cis-Acting elements within an RNA coliphage genome: Fold as you please, but fold you must!! J. Mol. Biol. 258, 433‒446.

    Article  CAS  PubMed  Google Scholar 

  16. Usui K., Ichihashi N., Yomo T. 2015. A design principle for a single-stranded RNA genome that replicates with less double-strand formation. Nucleic Acids Res. 43, 8033‒8043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson H.D. 1975. Functions of replicating RNA in cells infected by RNA bacteriophages. In: RNA Phages. Ed. Zinder N.D. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, pp. 113‒145.

  18. Schäffner W., Ruegg K.J., Weissmann C. 1977. Nanovariant RNAs: Nucleotide sequence and interaction with bacteriophage Qβ replicase. J. Mol. Biol. 117, 877‒907.

    Article  PubMed  Google Scholar 

  19. Ugarov V.I., Chetverin A.B. 2008. Functional circularity of legitimate Qβ replicase templates. J. Mol. Biol. 379, 414‒427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haruna I., Spiegelman S. 1965. Recognition of size and sequence by an RNA replicase. Proc. Natl. Acad. Sci. U. S. A.54, 1189‒1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chetverin A.B., Spirin A.S. 1995. Replicable RNA vectors: Prospects for cell-free gene amplification, expression and cloning. Prog. Nucl. Acid Res. Mol. Biol.51, 225‒270.

    Article  CAS  Google Scholar 

  22. Weissmann C., Billeter M.A., Goodman H.M., Hindley J., Weber H. 1973. Structure and function of phage RNA. Annu. Rev. Biochem. 42, 303‒328.

    Article  CAS  PubMed  Google Scholar 

  23. Haruna I., Spiegelman S. 1965. Specific template requirements of RNA replicases. Proc. Natl. Acad. Sci. U. S. A.54, 579‒587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mills D.R., Peterson R.L., Spiegelman S. 1967. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. U. S. A.58, 217‒224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banerjee A.K., Rensing U., August J.T. 1969. Replication of RNA viruses. X. Replication of a natural 6S RNA by the Qβ RNA polymerase. J. Mol. Biol.45, 181‒193.

    Article  CAS  PubMed  Google Scholar 

  26. Munishkin A.V., Voronin L.A., Chetverin A.B. 1988. An in vivo recombinant RNA capable of autocatalytic synthesis by Qβ replicase. Nature.333, 473‒475.

    Article  CAS  PubMed  Google Scholar 

  27. Hori K., Eoyang L., Banerjee A.K., August J.T. 1967. Replication of RNA viruses: 5. Template activity of synthetic ribopolymers in the Qβ RNA polymerase reaction. Proc. Natl. Acad. Sci. U. S. A.57, 1790‒1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feix G., Sano H. 1976. Polydeoxyribonucleotides as templates for RNA synthesis catalysed by Qβ replicase. FEBS Lett. 63, 201‒204.

    Article  CAS  PubMed  Google Scholar 

  29. Owens R.A., Diener T.O. 1977. Synthesis of RNA complementary to potato spindle tuber viroid using Qβ replicase. Virology.79, 109‒120.

    Article  CAS  PubMed  Google Scholar 

  30. Feix G., Hake H. 1975. Primer directed initiation of RNA synthesis catalysed by Qβ replicase. Biochem. Biophys. Res. Commun. 65, 503‒509.

    Article  CAS  PubMed  Google Scholar 

  31. Feix G. 1976. Primer-dependent copying of rabbit globin mRNA with Qβ replicase. Nature.259, 593‒594.

    Article  CAS  PubMed  Google Scholar 

  32. Vournakis J.N., Carmichael G.G., Efstratiadis A. 1976. Synthesis of RNA complementary of rabbit globin mRNA by Qβ replicase. Biochem. Biophys. Res. Commun. 70, 774‒782.

    Article  CAS  PubMed  Google Scholar 

  33. Palmenberg A., Kaesberg P. 1974. Synthesis of complementary strands of heterologous RNAs with Qβ replicase. Proc. Natl. Acad. Sci. U. S. A.71, 1371‒1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rensing U., August J.T. 1969. The 3'-terminus and the replication of phage RNA. Nature.224, 853‒856.

    Article  CAS  PubMed  Google Scholar 

  35. Blumenthal T., Carmichael G.G. 1979. RNA replication: Function and structure of Qβ replicase. Annu. Rev. Biochem. 48, 525‒548.

    Article  CAS  PubMed  Google Scholar 

  36. Brown D., Gold L. 1995. Selection and characterization of RNAs replicated by Qβ replicase. Biochemistry.34, 14775‒14782.

    Article  CAS  PubMed  Google Scholar 

  37. Munishkin A.V., Voronin L.A., Ugarov V.I., Bondareva L.A., Chetverina H.V., Chetverin A.B. 1991. Efficient templates for Qβ replicase are formed by recombination from heterologous sequences. J. Mol. Biol. 221, 463‒472.

    Article  CAS  PubMed  Google Scholar 

  38. Chetverin A.B. 2011. Paradoxes of replication of RNA of a bacterial virus. Mol. Biol. (Moscow). 45 (1), 139–149.

    Article  CAS  Google Scholar 

  39. Blumenthal T., Landers T.A. 1973. The inhibition of nucleic acid-binding proteins by aurintricarboxylic acid. Biochem. Biophys. Res. Commun. 55, 680‒688.

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez R.G., Haxo R.S., Schleich T. 1980. Mechanism of action of polymeric aurintricarboxylic acid, a potent inhibitor of protein–nucleic acid interactions. Biochemistry.19, 4299‒4303.

    Article  CAS  PubMed  Google Scholar 

  41. Ugarov V.I., Demidenko A.A., Chetverin A.B. 2003. Qβ replicase discriminates between legitimate and illegitimate templates by having different mechanisms of initiation. J. Biol. Chem.278, 44139‒44146.

    Article  CAS  PubMed  Google Scholar 

  42. Kidmose R.T., Vasiliev N.N., Chetverin A.B., Andersen G.R., Knudsen C.R. 2010. Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proc. Natl. Acad. Sci. U. S. A.107, 10884‒10889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takeshita D., Tomita K. 2010. Assembly of Qβ viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc. Natl. Acad. Sci. U. S. A.107, 15733‒15738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takeshita D., Tomita K. 2012. Molecular basis for RNA polymerization by Qβ replicase. Nat. Struct. Mol. Biol. 19, 229‒237.

    Article  CAS  PubMed  Google Scholar 

  45. Takeshita D., Yamashita S., Tomita K. 2012. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Structure.20, 1661‒1669.

    Article  CAS  PubMed  Google Scholar 

  46. Takeshita D., Yamashita. S, Tomita K. 2014. Molecular insights into replication initiation by Qβ replicase using ribosomal protein S1. Nucleic Acids Res. 42, 10809–10822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gytz H., Mohr D., Seweryn P., Yoshimura Y., Kutlubaeva Z., Dolman F., Chelchessa B., Chetverin A.B., Mulder F.A., Brodersen D.E., Knudsen C.R. 2015. Structural basis for RNA-genome recognition during bacteriophage Qβ replication. Nucleic Acids Res. 43, 10893‒10906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kamen K., Kondo M., Romer W., Weissmann C. 1972. Reconstitution of Qβ replicase lacking subunit α with protein-synthesis-interference factor i. Eur. J. Biochem. 31, 44–51.

    Article  CAS  PubMed  Google Scholar 

  49. Groner Y., Scheps R., Kamen R., Kolakofsky D., Revel M. 1972. Host subunit of Qβ replicase is translation control factor i. Nat. New Biol. 239, 19–20.

    Article  CAS  PubMed  Google Scholar 

  50. Wahba A.J., Miller M.J., Niveleau A., Landers T.A., Carmichael G.C., Weber K., Hawley D.A., Slobin L.I. 1974. Subunit I of Qβ replicase and 30S ribosomal protein S1 of E. coli.J. Biol. Chem.249, 3314–3316.

    CAS  PubMed  Google Scholar 

  51. Inouye H., Pollack Y. I., Pêtre J. 1974. Physical and functional homology between ribosomal protein S1 and interference factor i. Eur. J. Biochem. 45, 109–117.

    Article  CAS  PubMed  Google Scholar 

  52. Blumenthal T., Landers T.A., Weber K. 1972. Bacteriophage Qβ replicase contains the protein biosynthesis elongation factors EF-Tu and EF-Ts. Proc. Natl. Acad. Sci. U. S. A.69, 1313–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer F., Weber H., Weissmann C. 1981. Interactions of Qβ replicase with Qβ RNA. J. Mol. Biol. 153, 631‒660.

    Article  CAS  PubMed  Google Scholar 

  54. Miranda G., Schuppli D., Barrera I., Hausherr C., Sogo J.M., Weber H. 1997. Recognition of bacteriophage Qβ plus strand RNA as a template by Qβ replicase: Role of RNA interactions mediated by ribosomal proteins S1 and host factor. J. Mol. Biol. 267, 1089‒1103.

    Article  CAS  PubMed  Google Scholar 

  55. Kolakofsky D., Weissmann C. 1971. Possible mechanism for transition of viral RNA from polysome to replication complex. Nat. New Biol. 231, 42‒46.

    Article  CAS  PubMed  Google Scholar 

  56. Jacobson A.B. 1991. Secondary structure of coliphage Qβ RNA. Analysis by electron microscopy. J. Mol. Biol.221, 557‒570.

    Article  CAS  PubMed  Google Scholar 

  57. Vollenweider H.J., Koller T., Weber H., Weissmann C. 1976. Physical mapping of Qβ replicase binding sites on Qβ RNA. J. Mol. Biol.101, 367‒377.

    Article  CAS  PubMed  Google Scholar 

  58. Draper D.E., Pratt C.W., von Hippel P.H. 1977. Escherichia coli ribosomal protein S1 has two polynucleotide binding sites. Proc. Natl. Acad. Sci. U. S. A.74, 4786‒4790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Draper D.E., von Hippel P.H. 1978. Nucleic acid binding properties of Escherichia coli ribosomal protein S1. I. Structure and interactions of binding site I. J. Mol. Biol. 122, 321‒338.

    Article  CAS  PubMed  Google Scholar 

  60. Draper D.E., von Hippel P.H. 1978. Nucleic acid binding properties of Escherichia coli ribosomal protein S1. II. Co-operativity and specificity of binding site II. J. Mol. Biol. 122, 339‒359.

    Article  CAS  PubMed  Google Scholar 

  61. Subramanian A.R. 1983. Structure and functions of ribosomal protein S1. Prog. Nucl. Acid Res. Mol. Biol.28, 101‒142.

    Article  CAS  Google Scholar 

  62. Gassen H.G. 1980. Ligand-induced conformational changes in ribonucleic acids. Prog. Nucl. Acid Res. Mol. Biol. 24, 57‒86.

    Article  CAS  Google Scholar 

  63. Thomas J.O., Szer W. 1982. RNA-helix-destabilizing proteins. Prog. Nucl. Acid Res. Mol. Biol.27, 157‒187.

    Article  CAS  Google Scholar 

  64. Kamen R. 1975. Structure and function of the Qβ RNA replicase. In: RNA Phages. Ed. Zinder N.D. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, pp. 203–234.

  65. Kolb A., Hermoso J.M., Thomas J.O., Szer W. 1977. Nucleic acid helix-unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc. Natl. Acad. Sci. U. S. A.74, 2379‒2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hajnsdorf E., Boni I.V. 2012. Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie.94, 1544‒1553.

    Article  CAS  PubMed  Google Scholar 

  67. Landers T.A., Blumenthal T., Weber K. 1974. Function and structure in ribonucleic acid phage Qβ ribonucleic acid replicase. The roles of the different subunits in transcription of synthetic templates. J. Biol. Chem. 249, 5801‒5808.

    CAS  PubMed  Google Scholar 

  68. Brown S., Blumenthal T. 1976. Reconstitution of Qβ RNA replicase from a covalently bonded elongation factor Tu-Ts complex. Proc. Natl. Acad. Sci. U. S. A.73, 1131‒1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown S., Blumenthal T. 1976. Function and structure in ribonucleic acid phage Qβ ribonucleic acid replicase. Effect of inhibitors of EF-Tu on ribonucleic acid synthesis and renaturation of active enzyme. J. Biol. Chem. 251, 2749‒2753.

    CAS  PubMed  Google Scholar 

  70. Blumenthal T. 1980. Interaction of host-coded and virus-coded polypeptides in RNA phage replication. Proc. R. Soc. Lond. B.210, 321‒335.

    Article  CAS  PubMed  Google Scholar 

  71. Carmichael G.G., Landers T.A., Weber K. 1976. Immunochemical analysis of the functions of the subunits of phage Qβ ribonucleic acid replicase. J. Biol. Chem. 251, 2744‒2748.

    CAS  PubMed  Google Scholar 

  72. Hori K., Harada K., Kuwano M. 1974. Function of bacteriophage Qβ replicase containing an altered subunit IV. J. Mol. Biol. 86, 699‒708.

    Article  CAS  PubMed  Google Scholar 

  73. Mitsunari Y., Hori K. 1973. Qβ replicase-associated, polycytidylic acid-dependent polyguanylic acid polymerase: 1. Characterization of the reaction. J. Biochem. 74, 263‒271.

    CAS  PubMed  Google Scholar 

  74. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F., Nyborg J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 270, 1464‒7142.

    Article  CAS  PubMed  Google Scholar 

  75. Nissen P., Thirup S., Kjeldgaard M., Nyborg J. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure. 7, 143‒156.

    Article  CAS  PubMed  Google Scholar 

  76. Levisohn R., Spiegelman S. 1968. The cloning of a self-replicating RNA molecule. Proc. Natl. Acad. Sci. U. S. A.60, 866‒872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mills D.R., Bishop H.L., Spiegelman S. 1968. The mechanism and direction of RNA synthesis templated by free minus strands of a “little” variant of Qβ RNA. Proc. Natl. Acad. Sci. U. S. A.60, 713‒720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kacian D.L., Mills D.R., Spiegelman S. 1971. The mechanism of Qβ replication: Sequence at the 5' terminus of a 6-S RNA template. Biochim. Biophys. Acta. 238, 212‒223.

    Article  CAS  PubMed  Google Scholar 

  79. Kacian D.L., Mills D.R., Kramer F.R., Spiegelman S. 1972. A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication. Proc. Natl. Acad. Sci. U. S. A.69, 3038‒3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mills D.R., Kramer F.R., Spiegelman S. 1973. Complete nucleotide sequence of a replicating RNA molecule. Science. 180, 916‒927.

    Article  CAS  PubMed  Google Scholar 

  81. Biebricher C.K. 1987. Replication and evolution of short-chained RNA species replicated by Qβ replicase. Cold Spring Harb. Symp. Quant. Biol. 52, 299‒306.

    Article  CAS  PubMed  Google Scholar 

  82. Horiuchi K. 1975. Genetic studies of RNA phages. In: RNA Phages. Ed. Zinder N.D. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, pp. 29‒50.

  83. Palasingam K., Shaklee P.N. 1992. Reversion of Qβ RNA phage mutants by homologous RNA recombination. J. Virol. 66, 2435‒2442.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chetverin A.B., Chetverina H.V., Demidenko A.A., Ugarov V.I. 1997. Nonhomologous RNA recombination in a cell-free system: Evidence for a transesterification mechanism guided by secondary structure. Cell.88, 503‒513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cooper P.D., Steiner-Pryor S., Scotti P.D., Delong D. 1974. On the nature of poliovirus genetic recombinants. J. Gen. Virol. 23, 41‒49.

    Article  Google Scholar 

  86. Kirkegaard K., Baltimore D. 1986. The mechanism of RNA recombination in poliovirus. Cell.47, 433–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lai M.M.C. 1992. RNA recombination in animal and plant viruses. Microbiol. Rev. 56, 61‒79.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chetverina H.V., Chetverin A.B. 1993. Cloning of RNA molecules in vitro.Nucleic Acids Res. 21, 2349‒2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chetverin A.B., Chetverina H.V. 2008. Molecular colony technique: A new tool for biomedical research and clinical practice. Prog. Nucl. Acid Res. Mol. Biol.82, 219‒255.

    Article  CAS  Google Scholar 

  90. Chetverina H.V., Demidenko A.A., Ugarov V.I., Chetverin A.B. 1999. Spontaneous rearrangements in RNA sequences. FEBS Lett.450, 89‒94.

    Article  CAS  PubMed  Google Scholar 

  91. Chetverin A.B., Kopein D.S., Chetverina H.V., Demidenko A.A., Ugarov V.I. 2005. Viral RNA-directed RNA polymerases use diverse mechanisms to promote recombination between RNA molecules. J. Biol. Chem.280, 8748‒8755.

    Article  CAS  PubMed  Google Scholar 

  92. Nagy P.D., Simon A.E. 1997. New insights into the mechanisms of RNA recombination. Virology. 235, 1‒9.

    Article  CAS  PubMed  Google Scholar 

  93. Pierangeli A., Bucci M., Forzan M., Pagnotti P., Equestre M., Pérez Bercoff R. 1999. Primer alignment-and-extension: A novel mechanism of viral RNA recombination responsible for the rescue of inactivated poliovirus cDNA clones. J. Gen. Virol. 80, 1889‒1897.

    Article  CAS  PubMed  Google Scholar 

  94. Kim M.J., Kao C. 2001. Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: Implications for RNA-RNA recombination. Proc. Natl. Acad. Sci. U. S. A.98, 4972‒4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gilbert W., de Souza S.J. 1999. Introns and the RNA world. In: The RNA World, 2nd ed. Eds. Gesteland R.F., Cech T.R., Atkins J.F. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, pp. 221–231.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Chetverin.

Ethics declarations

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 17-04-00597) and by the Program of the Presidium of the Russian Academy of Sciences for Basic Research in Molecular and Cell Biology and Postgenomic Technologies.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

ADDITIONAL INFORMATION

A shorter version of this review has been presented at the International Conference “Viruses: Discovering Big in Small” held during March 11–12, 2019 in Moscow and dedicated to the 90th birthday of Professor Vadim Izrailevich Agol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverin, A.B., Ugarov, V.I. & Chetverina, H.V. Unsolved Puzzles of Qβ Replicase. Mol Biol 53, 791–801 (2019). https://doi.org/10.1134/S0026893319060049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060049

Keywords:

Navigation