Skip to main content
Log in

Differentially Expressed Long Noncoding RNAs in the Promoter Region of the fork head Gene in Drosophila melanogaster Detected by Northern Blot Hybridization

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

It is known that long (200–300 nucleotides and longer) non-protein-coding RNAs (ncRNAs) tissue-specifically expressed from the regulatory regions of developmental genes can regulate the transcription of the mRNA of these genes. In this study, an attempt is made to identify differentially expressed ncRNAs in the extended promoter region of the fork head (fkh) gene of the fruit fly Drosophila melanogaster. We investigated four preparations of the total RNA: from embryos, from adult flies (separately from females and males), and from the S2 cell line of cultured Drosophila cells. In the total RNA preparations from embryos and adult flies, the levels of fkh expression differed substantially, whereas in S2 cells its expression is not detected at all (shown in this work). We perform classical Northern blot analysis of gel-separated RNAs hybridized to a series of radioactively labeled DNA fragments corresponding to the adjacent and partially overlapping regions of the promoter region of the fkh gene. Several previously unknown differentially expressed ncRNAs are detected, including those in the regions overlapping with the previously detected regulatory elements (TRE1 and salivary gland enhancer sgE) and the transcription start site of the fkh gene. The collected data complement and clarify the results of the previously conducted RNA-seq experiments, in particular, in terms of the length of the detected RNAs. These results may serve as a foundation for further studies of the mechanisms of tissue-specific regulation of the fkh gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Geisler S.J., Paro R. 2015. Trithorax and Polycomb group-dependent regulation: A tale of opposing activities. Development. 142, 2876–2887.

    Article  CAS  PubMed  Google Scholar 

  2. Grossniklaus U., Paro R. 2014. Transcriptional silencing by Polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 6, a019331.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berry S., Hartley M., Olsson T.S., Dean C., Howard M. 2015. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife. 4, e07205.

    Article  CAS  PubMed Central  Google Scholar 

  4. Steffen P.A., Ringrose L. 2014. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell Biol. 15, 340–356.

    Article  CAS  PubMed  Google Scholar 

  5. Tillib S., Petruk S., Sedkov Y., Kuzin A., Fujioka M., Goto T., Mazo A. 1999. Trithorax and Polycomb group response elements within a Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol. Cell. Biol. 19, 5289‒5202.

    Article  Google Scholar 

  6. Ringrose L. 2007. Polycomb comes of age: Genome-wide profiling of target sites. Curr. Opin. Cell Biol. 19, 290–297.

    Article  CAS  PubMed  Google Scholar 

  7. Di Croce L., Helin K. 2013. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147–1155.

    Article  CAS  PubMed  Google Scholar 

  8. Comet I., Riising E.M., Leblanc B., Helin K. 2016. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer. 16, 803–810.

    Article  CAS  PubMed  Google Scholar 

  9. Bauer M., Trupke J., Ringrose L. 2016. The quest for mammalian Polycomb response elements: Are we there yet? Chromosoma. 125, 471–496.

    Article  CAS  PubMed  Google Scholar 

  10. Kassis J.A., Brown J.L. 2013. Polycomb group response elements in Drosophila and vertebrates. Adv. Genet. 81, 83–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ringrose L., Paro R. 2004. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443.

    Article  CAS  PubMed  Google Scholar 

  12. Cech T.R., Steitz J.A. 2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157, 77–94.

    Article  CAS  PubMed  Google Scholar 

  13. Davidovich C., Cech T.R. 2015. The recruitment of chromatin modifiers by long noncoding RNAs: Lessons from PRC2. RNA. 21, 2007–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hekimoglu B., Ringrose L. 2009. Non-coding RNAs in polycomb/trithorax regulation. RNA Biol. 6, 129–137.

    Article  CAS  PubMed  Google Scholar 

  15. Lempradl A., Ringrose L. 2008. How does noncoding transcription regulate Hox genes? BioEssays. 30, 110–121.

    Article  CAS  PubMed  Google Scholar 

  16. DiStefano J.K. 2018. The emerging role of long noncoding RNAs in human disease. Methods Mol. Biol. 1706, 91–110.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K.C., Yang Y.W., Liu B., Sanyal A., Corces-Zimmerman R., Chen Y., Lajoie B.R., Protacio A., Flynn R.A., Gupta R.A., Wysocka J., Lei M., Dekker J., Helms J.A., Chang H.Y. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 472, 120–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ringrose L. 2017. Noncoding RNAs in Polycomb and Trithorax regulation: A quantitative perspective. Annu. Rev. Genet. 51, 385–411.

    Article  CAS  PubMed  Google Scholar 

  19. Kuzin B., Tillib S., Sedkov I., Mizrokhi L., Mazo A. 1994. The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head. Genes Dev. 8, 2478‒2490.

    Article  CAS  PubMed  Google Scholar 

  20. Riakhovskiĭ A.A., Tillib S.V. 2007. Immunoprecipitation mapping of the TRX-associated chromosome elements in the fork head gene promoter in the Drosophila melanogaster salivary gland cells. Russ. J. Genet. 43, 1181–1189.

    Article  CAS  Google Scholar 

  21. Riakhovskiĭ A.A., Tillib S.V. 2007. Colocalization of S/MAR and TRE in regulatory chromosome regions with tissue-specifically expressed genes in Drosophila melanogaster. Dokl. Akad. Nauk. 416, 416‒419.

    Google Scholar 

  22. Weigel D., Jiirgens G., Kuttner F., Seifert E., Jackie H. 1989. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 57, 645‒658.

    Article  CAS  PubMed  Google Scholar 

  23. Weigel D., Seifert E., Renter D., Jackie H. 1990. Regulatory elements controlling expression of the Drosophila homeotic gene fork head. EMBO J. 9, 1199‒1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molecular Cloning A Laboratory Manual, 3rd ed. 2001. Eds. Sambrook J., Russell D.W. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

  25. Zhou B., Bagri A., Beckendorf S.K. 2001. Salivary gland determination in Drosophila: A salivary-specific, fork head enhancer integrates spatial pattern and allows fork head autoregulation. Dev. Biol. 237, 54–67.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X., Goodrich K.J., Gooding A.R., Naeem H., Archer S., Paucek R.D., Youmans D.T., Cech T.R., Davidovich C. 2017. Targeting of Polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol. Cell. 65, 1056–1067.

    Article  CAS  PubMed  Google Scholar 

  27. Okulski H., Druck B., Bhalerao S., Ringrose L. 2011. Quantitative analysis of Polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment. Epigenet. Chromatin. 4, 4.

    Article  CAS  Google Scholar 

  28. Ray P., De S., Mitra A., Bezstarosti K., Demmers J.A., Pfeifer K., Kassis J.A. 2016. Combgap contributes to recruitment of Polycomb group proteins in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 113, 3826–3831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herzog V.A., Lempradl A., Trupke J., Okulski H., Altmutter C., Ruge F., Boidol B., Kubicek S., Schmauss G., Aumayr K., Ruf M., Pospisilik A., Dimond A., Senergin H.B., Vargas M.L., et al. 2014. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat. Genet. 46, 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tillib.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlin, A.I., Tillib, S.V. Differentially Expressed Long Noncoding RNAs in the Promoter Region of the fork head Gene in Drosophila melanogaster Detected by Northern Blot Hybridization. Mol Biol 53, 419–426 (2019). https://doi.org/10.1134/S0026893319030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319030038

Keywords:

Navigation