Skip to main content

Epithelial to Mesenchymal Transition Marker in 2D and 3D Colon Cancer Cell Cultures in the Presence of Laminin 332 and 411

The loss of apical-basal cell polarity is a necessary stage of the epithelial-mesenchymal transition (EMT). Polarized epithelial cells interact with the basement membrane (BM) and, in particular, with laminins, the major components of BM. Here, we examined the effect of the transition of colon cancer cells from 2D polarized state to non-polarized 3D state on the expression of EMT associated genes, as well as the role of laminins 332 and 411 (LM-332 and LM-411) in this process. The three studied cell lines, HT-29, HCT-116 and RKO, were found to have different sensitivity to cultivation conditions (2D to 3D changes) and to addition of laminins. One of the possible reasons for this may be a difference in the initial 2D state of the cells. In particular, it was shown that the cell lines were at different EMT stages. HT-29 exhibited more epithelial expression profile, RKO was more mesenchymal, and HCT-116 was in an intermediate state. The most laminin-sensitive cell line was HCT-116. The magnitude and the specificity of cell response to LM-332 and LM-411 depended on the expression pattern of laminins’ receptors. EMT gene expression profile was not substantially changed neither during the transition from 2D to 3D state, nor the presence of laminins’ isoforms. However, we detected changes in expression of SNAI1 and ZEB1 genes encoding transcription factors that control the EMT process. Notably, in all three studied cell lines, the expression of SNAI1 was enhanced in response to laminin treatment.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Samatov T.R., Tonevitsky A.G., Schumacher U. 2013. Epithelial–mesenchymal transition: Focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol. Cancer. 12, 107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamouille S., Xu J., Derynck R. 2014. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Domogatskaya A., Rodin S., Tryggvason K. 2012. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28, 523–553.

    Article  CAS  PubMed  Google Scholar 

  4. Matlin K.S., Myllymäki S.-M., Manninen A. 2017. Laminins in epithelial cell polarization: Old questions in search of new answers. Cold Spring Harb. Perspect. Biol., a027920.

  5. Marinkovich M.P. 2007. Tumour microenvironment: Laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer. 7, 370–380.

    Article  CAS  PubMed  Google Scholar 

  6. Yurchenco P.D. 2011. Basement membranes: Cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911–a004911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pastushenko I., Brisebarre A., Sifrim A., Fioramonti M., Revenco T., Boumahdi S., Van Keymeulen A., Brown D., Moers V., Lemaire S., De Clercq S., Minguijón E., Balsat C., Sokolow Y., Dubois C., et al. 2018. Identification of the tumour transition states occurring during EMT. Nature. 556, 463–468.

    Article  CAS  PubMed  Google Scholar 

  8. Maltseva D.V., Rodin S.A. 2018. Laminins in metastatic cancer. Mol. Biol. (Moscow). 52 (3), 350–371.

    Article  CAS  Google Scholar 

  9. Doi M., Thyboll J., Kortesmaa J., Jansson K., Iivanainen A., Parvardeh M., Timpl R., Hedin U., Swedenborg J., Tryggvason K. 2002. Recombinant human laminin-10 (alpha5beta1gamma1): Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 277, 12741–12748.

    Article  CAS  PubMed  Google Scholar 

  10. Khaustova N.A., Maltseva D.V., Oliveira-Ferrer L., Stürken C., Milde-Langosch K., Makarova J.A., Rodin S., Schumacher U., Tonevitsky A.G. 2017. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie. 142, 197–206.

    Article  CAS  PubMed  Google Scholar 

  11. Maltseva D.V., Krainova N.A., Khaustova N.A., Nikulin S. V., Tonevitskaya S.A., Poloznikov A.A. 2017. Biodistribution of viscumin after subcutaneous injection to mice and in vitro modeling of endoplasmic reticulum stress. Bull. Exp. Biol. Med. 163, 451–455.

    Article  CAS  PubMed  Google Scholar 

  12. Krainova N.A., Khaustova N.A., Makeeva D.S., Fedotov N.N., Gudim E.A., Ryabenko E.A., Shkurnikov M.U., Galatenko V.V., Sakharov D.A., Maltseva D.V. 2013. Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells. Appl. Biochem. Microbiol. 49, 743–749.

    Article  CAS  Google Scholar 

  13. Maltseva D.V., Khaustova N.A., Fedotov N.N., Matveeva E.O., Lebedev A.E., Shkurnikov M.U., Galatenko V.V., Schumacher U., Tonevitsky A.G. 2013. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J. Clin. Bioinform. 3, 13.

    Article  CAS  Google Scholar 

  14. Nieto M.A., Huang R.Y.-J., Jackson R.A., Thiery J.P. 2016. EMT: 2016. Cell. 166, 21–45.

    Article  CAS  PubMed  Google Scholar 

  15. Nikulin S.V, Raigorodskaya M.P., Poloznikov A.A., Zakharova G.S., Schumacher U., Wicklein D., Stürken C., Riecken K., Fomicheva K.A., Alekseev B.Y., Shkurnikov M.Y. 2018. Role of IGFBP6 protein in the regulation of epithelial-mesenchymal transition genes. Bull. Exp. Biol. Med. 164, 650–654.

    Article  CAS  PubMed  Google Scholar 

  16. Kudriaeva A., Galatenko V., Maltseva D., Khaustova N., Kuzina E., Tonevitsky A., Gabibov A., Belogurov A. 2017. The transcriptome of type I murine astrocytes under interferon-gamma exposure and remyelination stimulus. Molecules. 22, 808.

    Article  CAS  PubMed Central  Google Scholar 

  17. Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehár J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., et al. 2012. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483, 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramovs V., Te Molder L., Sonnenberg A. 2017. The opposing roles of laminin-binding integrins in cancer. Matrix Biol. 57–58, 213–243.

    Article  CAS  PubMed  Google Scholar 

  19. Thomson S., Petti F., Sujka-Kwok I., Mercado P., Bean J., Monaghan M., Seymour S.L., Argast G.M., Epstein D.M., Haley J.D. 2011. A systems view of epithelial–mesenchymal transition signaling states. Clin. Exp. Metastasis. 28, 137–155.

    Article  CAS  PubMed  Google Scholar 

  20. Qin Y., Rodin S., Simonson O.E., Hollande F. 2017. Laminins and cancer stem cells: Partners in crime? Semin. Cancer Biol. 45, 3–12.

    Article  CAS  PubMed  Google Scholar 

  21. Galatenko V.V., Maltseva D.V., Galatenko A.V., Rodin S., Tonevitsky A.G. 2018. Cumulative prognostic power of laminin genes in colorectal cancer. BMC Med. Genomics. 11, 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodin S.A., Maltseva D.V. 2017. Laminins in colorectal cancer: Expression, function, prognostic power and molecular mechanisms. Res. Pract. Med. J. 4, 73–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Maltseva.

Additional information

Translated by I. Shipounova

Abbreviations: BM, basement membrane; LM, laminin when the certain isoform is designated; EMT, epithelial-mesenchymal transition.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltseva, D.V., Makarova, J.A., Khristichenko, A.Y. et al. Epithelial to Mesenchymal Transition Marker in 2D and 3D Colon Cancer Cell Cultures in the Presence of Laminin 332 and 411. Mol Biol 53, 291–298 (2019). https://doi.org/10.1134/S0026893319020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319020110

Keywords: