Skip to main content
Log in

MiR-222-3p Regulates the Proliferation and Differentiation of C2C12 Myoblasts by Targeting BTG2

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

MiR-222-3p has been implicated in tumor cell proliferation and has an important role in the differentiation and maturation of myogenic cells. However, its role in skeletal myoblast proliferation is still unclear. In this study, we found that miR-222-3p expression increases initially and then decreases during C2C12 myoblast proliferation. Using synthetic miRNA mimics and inhibitors in gain- or loss-of-function experiments, we showed that miR-222-3p overexpression in C2C12 cells promotes myoblast proliferation and represses myofiber formation, while miR-222-3p downregulation has the opposite effect. Using a prediction program, BTG2 was identified as a possible target gene of miR-222-3p. During myogenesis, miR-222-3p mimics repress BTG2 expression, while miR-222-3p inhibitors promote BTG2 expression. Using dual-luciferase reporter assay, we further demonstrated that miR-222-3p specifically targets BTG2. Additionally, we show that siRNA-mediated downregulation of BTG2 expression in C2C12 myoblasts promotes the proliferation and suppresses differentiation. In conclusion, we provide a novel insight into the mechanism by which miR-222-3p regulates the proliferation and differentiation of C2C12 myoblasts by targeting BTG2. This information contributes to our understanding of the role of miRNAs in skeletal muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ambros V. 2004. The functions of animal microRNAs. Nature. 7006, 350‒355.

    Article  CAS  Google Scholar 

  2. Berkes C.A., Tapscott S.J. 2005. MyoD and the transcriptional control of myogenesis. Semin. Cell. Dev. Biol. 16, 585‒595.

    Article  CAS  PubMed  Google Scholar 

  3. Cardinali B., Cappella M., Provenzano C., Garcia-Manteiga J.M., Lazarevic D., Cittaro D., Martelli F., Falcone G. 2016. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells. Cell Death Dis. 7, e2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cardinali B., Castellani L., Fasanaro P., Basso A., Alemà S., Martelli F., Falcone G. 2009. MicroRNA-221 and microRNA-222 modulate differentiation and maturation of skeletal muscle cells. PLos One. 4, e7607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J.F., Mandel E.M., Thomson J.M., Wu Q.L., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228‒233.

    Article  CAS  PubMed  Google Scholar 

  6. Chen J.F., Tao Y., Li J., Deng Z.L., Yan Z., Xiao X., Wang D.Z. 2010. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 190, 867‒879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De F.M., De L.A. 2006. Involvement of cdks and cyclins in muscle differentiation. Eur. J. Histochem. 62, 19‒23.

    Google Scholar 

  8. Elghissassi F., Valsesiawittmann S., Falette N., Duriez C., Walden P. D., Puisieux A. 2002. BTG2 (TIS21/PC3) induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene. 21, 6772.

    Article  CAS  Google Scholar 

  9. Evangelisti C., Astolfi A., Gaboardi G.C., Tazzari P., Pession A., Goto K., Alberto M. 2009. TIS21/BTG2/ PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-zeta-dependent cell cycle arrest. Cell. Signal. 21, 801‒809.

    Article  CAS  PubMed  Google Scholar 

  10. Feng Z., Tang Z. L., Li K., Liu B., Yu M., Zhao S.H. 2007. Molecular characterization of the BTG2 and BTG3 genes in fetal muscle development of pigs. Gene. 403, 170‒177.

    Article  CAS  PubMed  Google Scholar 

  11. Galardi S., Mercatelli N., Giorda E., Massalini S., Frajese G.V., Ciafrè S.A. 2007. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 282, 23716‒23724.

    Article  CAS  PubMed  Google Scholar 

  12. Ge Y., Chen J. 2011. MicroRNAs in skeletal myogenesis. Cell Cycle. 10, 441‒448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang W.W., Yang J.S., Pai S.J., Wu P.P., Chang S.J., Chu F.S., Fan M.J., Chiou S.M., Kuo H.M., Yeh C.C., Chen P.Y., Tsuzuki M., Chung J.G. 2012. Bufalin induces G0/G1 phase arrest through inhibiting the levels of cyclin D, cyclin E, CDK2 and CDK4, and triggers apoptosis via mitochondrial signaling pathway in T24 human bladder cancer cells. Mutat. Res. 732, 26‒33.

    Article  CAS  PubMed  Google Scholar 

  14. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods. 25, 402‒408.

    Article  CAS  Google Scholar 

  15. Montarras D., Chelly J., Bober E., Arnold H., Ott M.O., Gros F., Pinset C. 1991. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biol. 3, 592‒600.

    CAS  PubMed  Google Scholar 

  16. Reiter R.J., Tan D.X., Galano A. 2014. Melatonin reduces lipid peroxidation and membrane viscosity. Front. Physiol. 5, 377.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roy R., Taourit S., Zaragoza P., Eggen A., Rodellar C. 2005. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): Comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenet. Genome Res. 111, 65‒73.

    Article  CAS  PubMed  Google Scholar 

  18. Sabourin L.A., Rudnicki M.A. 2000. The molecular regulation of myogenesis. Clin. Genetics. 57, 16‒25.

    Article  CAS  Google Scholar 

  19. Tan S.B., Li J.B., Chen X., Zhang W., Zhang D., Zhang C., Li D., Zhang Y. 2014. Small molecule inhibitor of myogenic microRNAs leads to a discovery of miR-221/222–myoD–myomiRs regulatory pathway. Chem. Biol. 21, 1265‒1270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. H. Zhang or L. Zhu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D.L., Gan, M.L., Tan, Y. et al. MiR-222-3p Regulates the Proliferation and Differentiation of C2C12 Myoblasts by Targeting BTG2. Mol Biol 53, 38–44 (2019). https://doi.org/10.1134/S0026893319010187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319010187

Keywords:

Navigation