Skip to main content
Log in

Inhibition of Histone Deacetylases Reverses Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through a Slug Mediated Mechanism

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

High metastatic ability and poor clinical outcome are the most known clinical features of the triple- negative breast tumors. Given that the tumor cells undergoing epithelial-mesenchymal transition (EMT) often gain malignant and invasive features, we have investigated the possibility of EMT reversal in triple-negative breast cancer cells by targeting the epigenetic-modifying enzymatic complexes named histone deacetylases (HDACs) and examined the possible mechanism underlying the HDACs-based inversion in model MDA-MB-231 cells. Cells were treated with a maximal tolerable 200 nM concentrations of classical HDACs inhibitor Trichostatin A (TSA) for 48 h and afterwards the invasiveness and immigration of the cells were evaluated in TransWell Invasion Scratch Wound Healing assays. Then, in treated and control cells, quantitative real time-PCRreacions were performed for assessing the gene expression of EMT biomarkers E-cadherin, Vimentin and transcriptional factor Slug. After TSA treatment, the invasion and migration properties MDAMB- 231 cells significantly decreased, gene expression of E-cadherin was significantly up-regulated, while the levels of Slug and Vimentin encoding mRNAs were suppressed. We conclude that inhibition of HDACs in triple- negative breast cancer cells may lead to inversion of EMT and the decrease of invasiveness by down-regulating the gene expression of Slug. Since EMT is known as a pre-metastatic process, triple-negative breast tumors, the EMT reversal effects of HDACs inhibition may reduce tumor cell metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunßen A., Hübner J., Katalinic A., Noftz M.R., Waldmann A. 2016. In: Breast Cancer Epidemiology: Management of Breast Diseases. Springer, pp. 125–137.

    Book  Google Scholar 

  2. Ferlay J., Héry C., Autier P., Sankaranarayanan R. 2010. In: Global Burden of Breast Cancer: Breast Cancer Epidemiology. Springer, pp. 1–19.

    Book  Google Scholar 

  3. Kalluri R., Weinberg R.A. 2009. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kalluri R., Neilson E.G. 2003. Epithelial–mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zeisberg M., Neilson E.G. 2009. Biomarkers for epithelial–mesenchymal transitions. J. Clin. Invest. 119, 1429–1437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kovacs E.M., Ali R.G., McCormack A.J. 2002. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem. 277, 6708–6718.

    Article  PubMed  CAS  Google Scholar 

  7. Franke W.W., Schmid E., Osborn M., Weber K. 1978. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A. 75, 5034–5038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thiery J.P., Acloque H., Huang R.Y., Nieto M.A. 2009. Epithelial–mesenchymal transitions in development and disease. Cell. 139, 871–890.

    Article  PubMed  CAS  Google Scholar 

  9. Bolós V., Peinado H., Pérez-Moreno M.A., et al. 2003. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. J. Cell Sci. 116, 499–511.

    Article  PubMed  CAS  Google Scholar 

  10. Vuoriluoto K., Haugen H., Kiviluoto S., et al. 2011. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 30, 1436–1448.

    Article  PubMed  CAS  Google Scholar 

  11. Haberland M., Montgomery R.L., Olson E.N. 2009. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 10, 32–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zentner G.E., Henikoff S. 2013. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266.

    Article  PubMed  CAS  Google Scholar 

  13. Weichert W., Röske A., Gekeler V., et al. 2008. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer. 98, 604–610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Weichert W., Röske A., Niesporek S., et al. 2008. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: Specific role of class I histone deacetylases in vitro and in vivo. Clin. Cancer Res. 14, 1669–1677.

    Article  PubMed  CAS  Google Scholar 

  15. Minamiya Y., Ono T., Saito H., et al. 2011. Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer. 74, 300–304.

    Article  PubMed  Google Scholar 

  16. Rikimaru T., Taketomi A., Yamashita Y.I., et al. 2007. Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology. 72, 69–74.

    Article  PubMed  CAS  Google Scholar 

  17. West A.C., Johnstone R.W. 2014. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest. 124, 30–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Peinado H., Ballestar E., Esteller M., Cano A. 2004. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24, 306–319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chomczynski P., Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshikawa M., Hishikawa K., Marumo T., Fujita T. 2007. Inhibition of histone deacetylase activity suppreßses epithelial-to-mesenchymal transition induced by TGF-ß1 in human renal epithelial cells. J. Am. Soc. Nephrol. 18, 58–65.

    Article  PubMed  CAS  Google Scholar 

  21. Kaimori A., Potter J.J., Choti M., et al. 2010. Histone deacetylase inhibition suppresses the transforming growth factor β1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology. 52, 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  22. Chikina A., Alexandrova A.Y. 2014. The cellular mechanisms and regulation of metastasis formation. Mol. Biol. (Moscow). 48, 165–180.

    Article  CAS  Google Scholar 

  23. Kong D., Ahmad A., Bao B, Li Y., Banerjee S., Sarkar F.H. 2012. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One. 7, e45045.

    Article  CAS  Google Scholar 

  24. Mason S.D., Joyce J.A. 2011. Proteolytic networks in cancer. Trends. Cell. Biol. 21, 228–237.

    Article  PubMed  CAS  Google Scholar 

  25. Wang X., Xu J., Wang H., et al. 2015. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial–mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem. Biophys. Res. Commun. 456, 320–326.

    Article  PubMed  CAS  Google Scholar 

  26. Li Y., Zhao Z., Xu C., et al. 2014. HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett. (Amsterdam). 355, 130–140.

    Article  CAS  Google Scholar 

  27. Liu Y.N., Abou-Kheir W., Yin J.J., et al. 2012. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial–mesenchymal transition. Mol. Cell. Biol. 32, 941–953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jing Y., Cui D., Guo W., et al. 2014. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett. (Amsterdam). 348, 135–145.

    Article  CAS  Google Scholar 

  29. Shih J.Y., Yang P.C. 2011. The EMT regulator slug and lung carcinogenesis. Carcinogenesis. 32, 1299–1304.

    Article  PubMed  CAS  Google Scholar 

  30. Tang Y., Liang X., Zhu G., Zheng M., Yang J., Chen Y. 2010. Expression and importance of zinc-finger transcription factor Slug in adenoid cystic carcinoma of salivary gland. J. Oral Pathol. Med. 39, 775–780.

    Article  PubMed  Google Scholar 

  31. Hasan M.R., Sharma R., Saraya A., et al. 2013. Slug is a predictor of poor prognosis in esophageal squamous cell carcinoma patients. PLoS One. 8, e82846.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mellati.

Additional information

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimian, A., Barati, G., Mehrandish, R. et al. Inhibition of Histone Deacetylases Reverses Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells through a Slug Mediated Mechanism. Mol Biol 52, 406–413 (2018). https://doi.org/10.1134/S0026893318030111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318030111

Keywords

Navigation