Advertisement

Molecular Biology

, Volume 52, Issue 3, pp 306–322 | Cite as

Oncolytic Paramyxoviruses: Mechanism of Action, Preclinical and Clinical Studies

  • O. V. Matveeva
  • G. V. Kochneva
  • S. S. Zainutdinov
  • G. V. Ilyinskaya
  • P. M. Chumakov
Reviews
  • 50 Downloads

Abstract

Preclinical studies demonstrate that a broad spectrum of human and animal malignant cells can be killed by oncolytic paramyxoviruses, which includes cells of ecto-, endo- and mesodermal origin. In clinical trials, significant reduction or even complete elimination of primary tumors and established metastases has been reported. Different routes of virus administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural) and single- vs. multiple-dose administration schemes have been explored. The reported side effects were grades 1 and 2, with the most common among them being mild fever. There are certain advantages in using paramyxoviruses as oncolytic agents compared to members of other virus families exist. Thanks to cytoplasmic replication, paramyxoviruses do not integrate the host genome or engage in recombination, which makes them safer and more attractive candidates for widely used therapeutic oncolysis than retroviruses or some DNA viruses. The list of oncolytic Paramyxoviridae members includes the attenuated measles virus, mumps virus, low pathogenic Newcastle disease, and Sendai viruses. Metastatic cancer cells frequently overexpress certain surface molecules that can serve as receptors for oncolytic paramyxoviruses. This promotes specific viral attachment to these malignant cells. Paramyxoviruses are capable of inducing efficient syncytium-mediated lysis of cancer cells and elicit strong immune stimulation, which dramatically enforces anticancer immune surveillance. In general, preclinical studies and phases I–III of clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.

Keywords

oncolytic paramyxoviruses viral oncolysis Newcastle disease virus vaccine strain of measles virus Sendai virus mumps virus anticancer mechanism anticancer immunity cancer therapy therapy of malignant tumors 

Abbreviations

PFU

plaque-forming unit

EID50

embryo infectious dose 50 (virus dilution that infects 50% of inoculated chicken embryos)

CI

confidence interval

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dock G. 1904. The influence of complicating diseases upon leukemia. Am. J. Med. Sci. 127, 563–592.CrossRefGoogle Scholar
  2. 2.
    De Pace N. 1912. Sulla scomparsa di un enorme cancro vegetante del collo dell’utero senza cura chirurgica. Ginecologia. 9, 82–89.Google Scholar
  3. 3.
    Levaditi C., Nicolau S. 1923. Vaccine et neoplasmes Ann. Inst. Pasteur. 37, 443–447.Google Scholar
  4. 4.
    Farber S., Diamond L.K. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793.PubMedCrossRefGoogle Scholar
  5. 5.
    Svejda J. 1950. Viruses and tumors. Lek. Listy. 5, 688–689.PubMedGoogle Scholar
  6. 6.
    Moore A.E. 1954. Effects of viruses on tumors. Annu. Rev. Microbiol. 8, 393–410.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelly E., Russell S.J. 2007. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 15, 651–659.PubMedCrossRefGoogle Scholar
  8. 8.
    Netesov S.V., Kochneva G.V., Svyatchenko V.A., et al. 2011. Oncolytic viruses: Achievements and problems. Epidemiol. Sanit. (Moscow). 13, 10–17.Google Scholar
  9. 9.
    Kochneva G.V., Sivolobova G.F., Yudina K.V., et al. 2012. Oncolytic poxviruses. Mol. Genet. Microbiol. Virol. (Moscow). 27 (1), 7–15.CrossRefGoogle Scholar
  10. 10.
    Loktev V.B., Ivankina T.Yu., Netesov S.V., Chumakov P.M. 2012. Oncolytic parvoviruses. New approaches to the treatment of cancer. Bull. Russ. Acad. Med. Sci. 67, 42–47.Google Scholar
  11. 11.
    Svyatchenko V.A., Tarasova M.V., Netesov S.V., Chumakov P.M. 2012. Oncolytic adenoviruses in anticancer therapy: Current status and prospects. Mol. Biol. (Moscow). 46, 496–507.CrossRefGoogle Scholar
  12. 12.
    Breitbach C.J., Lichty B.D., Bell J.C. 2016. Oncolytic viruses: Therapeutics with an identity crisis. EBioMedicine. 9, 31–36.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Fukuhara H., Ino Y., Todo T. 2016. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 107, 1373–1379.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Karapanagiotou E.M., Roulstone V., Twigger K., et al. 2012. Phase I/II trial of carboplatin and paclitaxel chemotherapy in combination with intravenous oncolytic reovirus in patients with advanced malignancies. Clin. Cancer Res. 18, 2080–2089.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Heo J., Reid T., Ruo L., et al. 2013. Randomized dosefinding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 19, 329–336.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dolgin E. 2015. Oncolytic viruses get a boost with first FDA-approval recommendation. Nat. Rev. Drug Discov. 14, 369–371.PubMedCrossRefGoogle Scholar
  17. 17.
    Donina S., Strele I., Proboka G., et al. 2015. Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 25, 421–426.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Takaoka A., Hayakawa S., Yanai H., et al. 2003. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature. 424, 516–523.PubMedCrossRefGoogle Scholar
  19. 19.
    Tanaka N., Ishihara M., Lamphier M.S., et al. 1996. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature. 382, 816–818.PubMedCrossRefGoogle Scholar
  20. 20.
    Moiseeva O., Mallette F.A., Mukhopadhyay U.K., et al. 2006. DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol. Biol. Cell. 17, 1583–1592.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Haus O. 2000. The genes of interferons and interferonrelated factors: Localization and relationships with chromosome aberrations in cancer. Arch. Immunol. Ther. Exp. 48, 95–100.Google Scholar
  22. 22.
    Mansour M., Palese P., Zamarin D. 2011. Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J. Virol. 85, 6015–6023.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Boisgerault N., Tangy F., Gregoire M. 2010. New perspectives in cancer virotherapy: Bringing the immune system into play. Immunotherapy. 2, 185–199.PubMedCrossRefGoogle Scholar
  24. 24.
    Prestwich R.J., Errington F., Diaz R.M., et al. 2009. The case of oncolytic viruses versus the immune system: Waiting on the judgment of Solomon. Hum. Gene Ther. 20, 1119–1132.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Donnelly O.G., Errington-Mais F., Steele L., et al. 2011. Measles virus causes immunogenic cell death in human melanoma. Gene Ther. 20, 7–15.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bartlett D.L., Liu Z., Sathaiah M., et al. 2013. Oncolytic viruses as therapeutic cancer vaccines. Mol. Cancer. 12, 103.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yu Y.A., Shabahang S., Timiryasova T.M., et al. 2004. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat. Biotechnol. 22, 313–320.PubMedCrossRefGoogle Scholar
  28. 28.
    Lemay C.G., Rintoul J.L., Kus A., et al. 2012. Harnessing oncolytic virus-mediated antitumor immunity in an infected cell vaccine. Mol. Ther. 20, 1791–1799.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sze D.Y., Reid T.R., Rose S.C. 2013. Oncolytic virotherapy. J. Vasc. Interv. Radiol. 24, 1115–1122.PubMedCrossRefGoogle Scholar
  30. 30.
    Tai L.H., Zhang J., Scott K.J., et al. 2013. Perioperative influenza vaccination reduces postoperative metastatic disease by reversing surgery-induced dysfunction in natural killer cells. Clin. Cancer Res. 19, 5104–5115.PubMedCrossRefGoogle Scholar
  31. 31.
    Matveeva O.V., Guo Z.S., Shabalina S.A., Chumakov P.M. 2015. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol. Ther. Oncolytics. 2, 15011.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Enders G. 1996. Paramyxoviruses. Galveston: Univ. Texas Med. Branch.Google Scholar
  33. 33.
    Bossart K.N., Fusco D.L., Broder C.C. 2013. Paramyxovirus entry. Adv. Exp. Med. Biol. 790, 95–127.PubMedCrossRefGoogle Scholar
  34. 34.
    Matrosovich M., Herrler G., Klenk H.D. 2013. Sialic acid receptors of viruses. Top. Curr. Chem. 7, 73.Google Scholar
  35. 35.
    Bull C., den Brok M.H., Adema G.J. 2014. Sweet escape: Sialic acids in tumor immune evasion. Biochim. Biophys. Acta. 1846, 238–246.PubMedGoogle Scholar
  36. 36.
    Bull C., Stoel M.A., den Brok M.H., Adema G.J. 2014. Sialic acids sweeten a tumor’s life. Cancer Res. 74, 3199–3204.PubMedCrossRefGoogle Scholar
  37. 37.
    Kawaguchi Y., Miyamoto Y., Inoue T., Kaneda Y. 2009. Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int. J. Cancer. 124, 2478–2487.PubMedCrossRefGoogle Scholar
  38. 38.
    Villar E., Barroso I.M. 2006. Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: a minireview. Glycoconj. J. 23, 5–17.PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson B.D., Nakamura T., Russell S.J., Peng K.W. 2004. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 64, 4919–4926.PubMedCrossRefGoogle Scholar
  40. 40.
    Surowiak P., Materna V., Maciejczyk A., et al. 2006. CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anticancer Res. 26, 4943–4948.PubMedGoogle Scholar
  41. 41.
    Maciejczyk A., Szelachowska J., Szynglarewicz B., et al. 2011. CD46 expression is an unfavorable prognostic factor in breast cancer cases. Appl. Immunohistochem. Mol. Morphol. 19, 540–546.PubMedCrossRefGoogle Scholar
  42. 42.
    Noyce R.S., Bondre D.G., Ha M.N., et al. 2011. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 7, e1002240.CrossRefGoogle Scholar
  43. 43.
    Noyce R.S., Richardson C.D. 2012. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 20, 429–439.PubMedCrossRefGoogle Scholar
  44. 44.
    Fabre-Lafay S., Garrido-Urbani S., Reymond N., et al. 2005. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alphaconverting enzyme (TACE)/ADAM-17. J. Biol. Chem. 280, 19543–19550.PubMedCrossRefGoogle Scholar
  45. 45.
    Derycke M.S., Pambuccian S.E., Gilks C.B., et al. 2010. Nectin 4 overexpression in ovarian cancer tissues and serum: Potential role as a serum biomarker. Am. J. Clin. Pathol. 134, 835–845.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Takano A., Ishikawa N., Nishino R., et al. 2009. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 69, 6694–6703.PubMedCrossRefGoogle Scholar
  47. 47.
    Myers R., Greiner S., Harvey M., et al. 2005. Oncolytic activities of approved mumps and measles vaccines for therapy of ovarian cancer. Cancer Gene Ther. 12, 593–599.PubMedCrossRefGoogle Scholar
  48. 48.
    Fabre-Lafay S., Monville F., Garrido-Urbani S., et al. 2007. Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer. 7, 73.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kingsbury D.W. 1991. The Paramyxoviruses. New York: Plenum.CrossRefGoogle Scholar
  50. 50.
    Cohen M., Elkabets M., Perlmutter M., et al. 2010. Sialylation of 3-methylcholanthrene-induced fibrosarcoma determines antitumor immune responses during immunoediting. J. Immunol. 185, 5869–5878.PubMedCrossRefGoogle Scholar
  51. 51.
    Powell L.D., Whiteheart S.W., Hart G.W. 1987. Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction. J. Immunol. 139, 262–270.PubMedGoogle Scholar
  52. 52.
    Galanis E. 2010. Therapeutic potential of oncolytic measles virus: Promises and challenges. Clin. Pharmacol. Ther. 88, 620–625.PubMedCrossRefGoogle Scholar
  53. 53.
    Iwata S., Schmidt A.C., Titani K., et al. 1994. Assignment of disulfide bridges in the fusion glycoprotein of Sendai virus. J. Virol. 68, 3200–3206.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tashiro M., Yokogoshi Y., Tobita K., et al. 1992. Tryptase Clara, an activating protease for Sendai virus in rat lungs, is involved in pneumopathogenicity. J. Virol. 66, 7211–7216.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sakai K., Kohri T., Tashiro M., et al. 1994. Sendai virus infection changes the subcellular localization of tryptase Clara in rat bronchiolar epithelial cells. Eur. Respir. J. 7, 686–692.PubMedCrossRefGoogle Scholar
  56. 56.
    Sakai K., Kawaguchi Y., Kishino Y., Kido H. 1993. Electron immunohistochemical localization in rat bronchiolar epithelial cells of tryptase Clara, which determines the pneumotropism and pathogenicity of Sendai virus and influenza virus. J. Hostochem. Cytochem. 41 (1), 89–93.CrossRefGoogle Scholar
  57. 57.
    Nagai Y. 1995. Virus activation by host proteinases. A pivotal role in the spread of infection, tissue tropism and pathogenicity. Microbiol. Immunol. 39, 1–9.PubMedGoogle Scholar
  58. 58.
    Kido H., Beppu Y., Sakai K., Towatari T. 1997. Molecular basis of proteolytic activation of Sendai virus infection and the defensive compounds for infection. Biol. Chem. 378, 255–263.PubMedCrossRefGoogle Scholar
  59. 59.
    Choi S., Bertram S., Glowacka I., et al. 2009. Type II transmembrane serine proteases in cancer and viral infections. Trends Mol. Med. 15, 303–312.PubMedCrossRefGoogle Scholar
  60. 60.
    Abe M., Tahara M., Sakai K., et al. 2013. TMPRSS2 Is an activating protease for respiratory parainfluenza viruses. J. Virol. 87, 11930–11935.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bertram S., Glowacka I., Blazejewska P., et al. 2010. TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J. Virol. 84, 10016–10025.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bateman A., Bullough F., Murphy S., et al. 2000. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res. 60, 1492–1497.PubMedGoogle Scholar
  63. 63.
    Bateman A.R., Harrington K.J., Kottke T., et al. 2002. Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigens by dendritic cells. Cancer Res. 62, 6566–6578.PubMedGoogle Scholar
  64. 64.
    Lin E., Salon C., Brambilla E., et al. 2010. Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: A potential therapy agent for lung cancer. Cancer Gene Ther. 17, 256–265PubMedCrossRefGoogle Scholar
  65. 65.
    Delpeut S., Rudd P.A., Labonte P., von Messling V. 2012. Membrane fusion-mediated autophagy induction enhances morbillivirus cell-to-cell spread. J. Virol. 86, 8527–8535.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kurooka M., Kaneda Y. 2007. Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 67, 227–236.PubMedCrossRefGoogle Scholar
  67. 67.
    Fujihara A., Kurooka M., Miki T., Kaneda Y. 2008. Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunol. Immunother. 57, 73–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Senin V., Senina A., Matveeva O. 2014. RF Patent No. 2519763.Google Scholar
  69. 69.
    Matveeva O.V., Guo Z.S., Senin V.M., et al. 2015. Oncolysis by paramyxoviruses: Preclinical and clinical studies. Mol. Ther. Oncolytics. 2, 15017.PubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cassel W.A., Murray D.R. 1992. A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med. Oncol. Tumor Pharmacother. 9, 169–171.PubMedGoogle Scholar
  71. 71.
    Batliwalla F.M., Bateman B.A., Serrano D., et al. 1998. A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire. Mol. Med. 4, 783–794.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Csatary L.K., Eckhardt S., Bukosza I., Czegledi F., Fenyvesi C., Gergely P., Bodey B., Csatary C.M. 1993. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect. Prev. 17, 619–627.PubMedGoogle Scholar
  73. 73.
    Csatary L.K., Gosztonyi G., Szeberenyi J., Fabian Z., Liszka V., Bodey B., Csatary C.M. 2004. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J. Neurooncol. 67, 83–93.PubMedCrossRefGoogle Scholar
  74. 74.
    Freeman A.I., Zakay-Rones Z., Gomori J.M., et al. 2006. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther. 13, 221–228.PubMedCrossRefGoogle Scholar
  75. 75.
    Pecora A.L., Rizvi N., Cohen G.I., et al. 2002. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J. Clin. Oncol. 20, 2251–2266.PubMedCrossRefGoogle Scholar
  76. 76.
    Laurie S.A., Bell J.C., Atkins H.L., et al. 2006. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin. Cancer Res. 12, 2555–2562.PubMedCrossRefGoogle Scholar
  77. 77.
    Lorence R.M., Roberts M.S., O’Neil J.D., et al. 2007. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr. Cancer Drug Targets. 7, 157–167.PubMedCrossRefGoogle Scholar
  78. 78.
    Hotte S.J., Lorence R.M., Hirte H.W., et al. 2007. An optimized clinical regimen for the oncolytic virus PV701. Clin. Cancer Res. 13, 977–985.PubMedCrossRefGoogle Scholar
  79. 79.
    Steiner H.H., Bonsanto M.M., Beckhove P., et al. 2004. Antitumor vaccination of patients with glioblastoma multiforme: A pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol. 22, 4272–4281.PubMedCrossRefGoogle Scholar
  80. 80.
    Karcher J., Dyckhoff G., Beckhove P., et al. 2004. Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virusmodified tumor cells. Cancer Res. 64, 8057–8061.PubMedCrossRefGoogle Scholar
  81. 81.
    Herold-Mende C., Karcher J., Dyckhoff G., Schirrmacher V. 2005. Antitumor immunization of head and neck squamous cell carcinoma patients with a virusmodified autologous tumor cell vaccine. Adv. Otorhinolaryngol. 62, 173–183.PubMedGoogle Scholar
  82. 82.
    Schulze T., Kemmner W., Weitz J., et al. 2009. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: Results of a prospective randomized trial. Cancer Immunol. Immunother. 58, 61–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Keshelava V.B. 2007. Newcastle disease oncolytic virus and autologous tumor cells in complex cancer therapy. Epidemiol. Vaktsinoprofilakt. 3, 23–28.Google Scholar
  84. 84.
    Keshelava V.V., Dobrovolskaya N.Y., Podolskaya M.V., Gardarnik T.V. 2009. Organ-preserving treatment of breast cancer with the use of oncolytic Newcastle disease virus. Vestn. Ross. Nauch. Tsentra Rentgenoradiol. 9, 6.Google Scholar
  85. 85.
    Keshelava V.V., Dobrovolskaya N.Y., Stavitsky R.V., Podolskaya M.V. 2010. Efficacy of the integrated treatment of cervical cancer using the Newcastle disease virus. Radiology–Practice. 15, 38–45.Google Scholar
  86. 86.
    Heinzerling L., Kunzi V., Oberholzer P.A., et al. 2005. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 106, 2287–2294.PubMedCrossRefGoogle Scholar
  87. 87.
    Galanis E., Hartmann L.C., Cliby W.A., et al. 2010. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 70, 875–882.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Russell S.J., Federspiel M.J., Peng K.W., et al. 2014. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin. Proc. 89, 926–933.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Galanis E., Atherton P.J., Maurer M.J., et al. 2015. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res. 75, 22–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Asada T. 1974. Treatment of human cancer with mumps virus. Cancer. 34, 1907–1928.PubMedCrossRefGoogle Scholar
  91. 91.
    Okuno Y., Asada T., Yamanishi K., et al. 1978. Studies on the use of mumps virus for treatment of human cancer. Biken J. 21, 37–49.PubMedGoogle Scholar
  92. 92.
    Shimizu Y., Hasumi K., Okudaira Y., et al. 1988. Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. Cancer Detect. Prev. 12, 487–495.PubMedGoogle Scholar
  93. 93.
    Emmerson P.T. 1999. Newcastle disease virus (Paramyxoviridae). In: Encyclopedia of Virology. Oxford: Elsevier, pp. 1020–1026.Google Scholar
  94. 94.
    Swayne D.E., King D.J. 2003. Avian influenza and Newcastle disease. J. Am. Vet. Med. Assoc. 222, 1534–1540.PubMedCrossRefGoogle Scholar
  95. 95.
    Flanagan A.D., Love R., Tesar W. 1955. Propagation of Newcastle disease virus in Ehrlich ascites cells in vitro and in vivo. Proc. Soc. Exp. Biol. Med. 90, 82–86.PubMedCrossRefGoogle Scholar
  96. 96.
    Lech P.J., Russell S.J. 2010. Use of attenuated paramyxoviruses for cancer therapy. Expert Rev. Vaccines. 9, 1275–1302.PubMedCrossRefGoogle Scholar
  97. 97.
    Fournier P., Bian H., Szeberenyi J., Schirrmacher V. 2012. Analysis of three properties of Newcastle disease virus for fighting cancer: Tumor-selective replication, antitumor cytotoxicity, and immunostimulation. Meth. Mol. Biol. 797, 177–204.CrossRefGoogle Scholar
  98. 98.
    Zamarin D., Palese P. 2012. Oncolytic Newcastle disease virus for cancer therapy: Old challenges and new directions. Future Microbiol. 7, 347–367.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lam H.Y., Yeap S.K., Rasoli M., et al. 2011. Safety and clinical usage of newcastle disease virus in cancer therapy. J. Biomed. Biotechnol. 718710, 26.Google Scholar
  100. 100.
    Reichard K.W., Lorence R.M., Cascino C.J., et al. 1992. Newcastle disease virus selectively kills human tumor cells. J. Surg. Res. 52, 448–453.PubMedCrossRefGoogle Scholar
  101. 101.
    Fiola C., Peeters B., Fournier P., et al. 2006. Tumor selective replication of Newcastle disease virus: Association with defects of tumor cells in antiviral defence. Int. J. Cancer. 119, 328–338.PubMedCrossRefGoogle Scholar
  102. 102.
    Fabian Z., Csatary C.M., Szeberenyi J., Csatary L.K. 2007. p53-independent endoplasmic reticulum stressmediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines. J. Virol. 81, 2817–2830.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Schirrmacher V., Haas C., Bonifer R., et al. 1999. Human tumor cell modification by virus infection: An efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 6, 63–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Zamarin D., Martinez-Sobrido L., Kelly K., et al. 2009. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol. Ther. 17, 697–706.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fabian Z., Torocsik B., Kiss K., et al. 2001. Induction of apoptosis by a Newcastle disease virus vaccine (MTH-68/H) in PC12 rat phaeochromocytoma cells. Anticancer Res. 21, 125–135.PubMedGoogle Scholar
  106. 106.
    Szeberenyi J., Fabian Z., Torocsik B., et al. 2003. Newcastle disease virus-induced apoptosis in PC12 pheochromocytoma cells. Am. J. Ther. 10, 282–288.PubMedCrossRefGoogle Scholar
  107. 107.
    Tzadok-David Y., Metzkin-Eizenberg M., Zakay-Rones Z. 1995. The effect of a mesogenic and a lentogenic Newcastle disease virus strain on Burkitt lymphoma Daudi cells. J. Cancer Res. Clin. Oncol. 121, 169–174.PubMedCrossRefGoogle Scholar
  108. 108.
    Bar-Eli N., Giloh H., Schlesinger M., Zakay-Rones Z. 1996. Preferential cytotoxic effect of Newcastle disease virus on lymphoma cells. J. Cancer Res. Clin. Oncol. 122, 409–415.PubMedCrossRefGoogle Scholar
  109. 109.
    Song K.Y., Wong J., Gonzalez L., et al. 2010. Antitumor efficacy of viral therapy using genetically engineered Newcastle disease virus [NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. J. Mol. Med. 88, 589–596.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lorence R.M., Reichard K.W., Katubig B.B., et al. 1994. Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J. Natl. Cancer Inst. 86, 1228–1233.PubMedCrossRefGoogle Scholar
  111. 111.
    Lorence R.M., Katubig B.B., Reichard K.W., et al. 1994. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res. 54, 6017–6021.PubMedGoogle Scholar
  112. 112.
    Phuangsab A., Lorence R.M., Reichard K.W., et al. 2001. Newcastle disease virus therapy of human tumor xenografts: Antitumor effects of local or systemic administration. Cancer Lett. 172, 27–36.PubMedCrossRefGoogle Scholar
  113. 113.
    Vigil A., Park M.S., Martinez O., et al. 2007. Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Res. 67, 8285–8292.PubMedCrossRefGoogle Scholar
  114. 114.
    Altomonte J., Marozin S., Schmid R.M., Ebert O. 2010. Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma. Mol. Ther. 18, 275–284.PubMedCrossRefGoogle Scholar
  115. 115.
    Schirrmacher V., Fournier P. 2009. Newcastle disease virus: A promising vector for viral therapy, immune therapy, and gene therapy of cancer. Meth. Mol. Biol. 542, 565–605.CrossRefGoogle Scholar
  116. 116.
    Schirrmacher V., Griesbach A., Ahlert T. 2001. Antitumor effects of Newcastle disease virus in vivo: Local versus systemic effects. Int. J. Oncol. 18, 945–952.PubMedGoogle Scholar
  117. 117.
    Lorence R.M., Pecora A.L., Major P.P., et al. 2003. Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr. Opin. Mol. Ther. 5, 618–624.PubMedGoogle Scholar
  118. 118.
    Keshelava V.B. 2014. Cancer: Realities and possibilities of application of the Newcastle disease virus. In: Virotherapy: Rationale, Criteria, Indications of Use, Effectiveness. Saarbrücken, Germany: Palmarum Acad.Google Scholar
  119. 119.
    Keshelava V.B. 2010. Results of a study of the oncolytic Newcastle disease virus in neoadjuvant therapy for breast cancer over a 3-year follow-up period. Vestn. Ross. Nauch. Tsentra Rentgenoradiol. 10, Article ID 04210000150421000022.Google Scholar
  120. 120.
    Nakamura T., Russell S.J. 2004. Oncolytic measles viruses for cancer therapy. Expert Opin. Biol. Ther. 4, 1685–1692.PubMedCrossRefGoogle Scholar
  121. 121.
    Blechacz B., Russell S.J. 2008. Measles virus as an oncolytic vector platform. Curr. Gene Ther. 8, 162–175.PubMedCrossRefGoogle Scholar
  122. 122.
    Allen C., Opyrchal M., Aderca I., et al. 2012. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther. 20, 444–449.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Enders J.F., Katz S.L., Milovanovic M.V., Holloway A. 1960. Studies on an attenuated measles-virus vaccine: 1. Development and preparations of the vaccine: Technics for assay of effects of vaccination. N. Engl. J. Med. 263, 153–159.PubMedGoogle Scholar
  124. 124.
    Grote D., Russell S.J., Cornu T.I., et al. 2001. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood. 97, 3746–3754.PubMedCrossRefGoogle Scholar
  125. 125.
    Dingli D., Peng K.W., Harvey M.E., et al. 2004. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 103, 1641–1646.PubMedCrossRefGoogle Scholar
  126. 126.
    Studebaker A.W., Kreofsky C.R., Pierson C.R., et al. 2010. Treatment of medulloblastoma with a modified measles virus. Neuro Oncol. 12, 1034–1042.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Phuong L.K., Allen C., Peng K.W., et al. 2003. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 63, 2462–2469.PubMedGoogle Scholar
  128. 128.
    Blechacz B., Splinter P.L., Greiner S., et al. 2006. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology. 44, 1465–1477.PubMedCrossRefGoogle Scholar
  129. 129.
    Msaouel P., Iankov I.D., Allen C., et al. 2009. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol. Ther. 17, 2041–2048.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    McDonald C.J., Erlichman C., Ingle J.N., et al. 2006. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res. Treat. 99, 177–184.PubMedCrossRefGoogle Scholar
  131. 131.
    Iankov I.D., Msaouel P., Allen C., et al. 2010. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res. Treat. 122, 745–754.PubMedCrossRefGoogle Scholar
  132. 132.
    Peng K.W., Hadac E.M., Anderson B.D., et al. 2006. Pharmacokinetics of oncolytic measles virotherapy: Eventual equilibrium between virus and tumor in an ovarian cancer xenograft model. Cancer Gene Ther. 13, 732–738.PubMedCrossRefGoogle Scholar
  133. 133.
    Guillerme G., Tangy M., Fonteneau F. 2013. Antitumor virotherapy by attenuated measles virus. Biology. 2, 587–602.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Msaouel P., Dispenzieri A., Galanis E. 2009. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. Curr. Opin. Mol. Ther. 11, 43–53.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Institute of Laboratory Animal Resources, U.S. Committee on Infectious Diseases of Mice and Rats. 1991. Infectious Diseases of Mice and Rats. Washington, DC: Natl. Acad. Press.Google Scholar
  136. 136.
    Inoue M., Tokusumi Y., Ban H., et al. 2003. A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-tocell spreading. J. Virol. 77, 6419–6429.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Yonemitsu Y., Ueda Y., Kinoh H., Hasegawa M. 2008. Immunostimulatory virotherapy using recombinant Sendai virus as a new cancer therapeutic regimen. Front. Biosci. 13, 1892–1898.PubMedCrossRefGoogle Scholar
  138. 138.
    Iwadate Y., Inoue M., Saegusa T., et al. 2005. Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin. Cancer Res. 11, 3821–3827.PubMedCrossRefGoogle Scholar
  139. 139.
    Matveeva O.V., Kochneva G.V., Netesov S.V. et al. 2015. Mechanisms of oncolysis by paramyxovirus Sendai. Acta Naturae 7 (2), 6–17.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Tanemura A., Kiyohara E., Katayama I., Kaneda Y. 2013. Recent advances and developments in the antitumor effect of the HVJ envelope vector on malignant melanoma: from the bench to clinical application. Cancer Gene Ther. 20, 599–605.PubMedCrossRefGoogle Scholar
  141. 141.
    Slobod K.S., Shenep J.L., Lujan-Zilbermann J., et al. 2004. Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine. 22, 3182–3186.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. V. Matveeva
    • 1
  • G. V. Kochneva
    • 2
    • 3
  • S. S. Zainutdinov
    • 2
    • 3
  • G. V. Ilyinskaya
    • 4
    • 5
  • P. M. Chumakov
    • 6
    • 7
  1. 1.Biopolymer Design LLCActonMassachusettsUnited States
  2. 2.State Research Center of Virology and Biotechnology VectorKoltsovoRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Russian Research Center of Medical Rehabilitation and BalneologyMoscowRussia
  5. 5.Blokhin Cancer Research CenterMoscowRussia
  6. 6.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  7. 7.Chumakov Federal Scientific Center for Research and Development of Immune and Biological ProductsRussian Academy of SciencesMoscowRussia

Personalised recommendations