Advertisement

Molecular Biology

, Volume 52, Issue 3, pp 350–371 | Cite as

Laminins in Metastatic Cancer

  • D. V. Maltseva
  • S. A. Rodin
Reviews
  • 37 Downloads

Abstract

Laminins are a family of extracellular heterotrimeric glycoproteins that are the main structural component of basement membranes (BMs), perform a barrier function, and are important for adhesion, differentiation, migration, and resistance to apoptosis of various cells, including cancer cells. The review summarizes the current knowledge of how laminins produced by cancer and normal cells influence the key stages of carcinogenesis. Laminin 332 (LN-332) and LN-111 enhance proliferation of certain cancer cells and increase the tumour growth. LN-111 increases resistance to apoptosis, induces differentiation, and inhibits the epithelial–mesenchymal transition (EMT) of cancer cells. LN-332 is associated with higher adhesion and higher migration potential of cancer cells. LN-411 and LN-421 significantly increase motility of cancer cells. LN-332 and LN-511 facilitate cell–cell adhesion and affect the efficacy of cell–cell interactions. The laminin chains α4 and α5 are important for the development and function of blood and lymphatic vessels. The expression ratio of the α4 and α5 laminin chains defines the BM permeability to leukocytes and, presumably, cancer cells in blood and lymphatic vessels. Interactions between LN-511 and α2-containing laminins enhance selfrenewal and survival of circulating cancer stem cells. Moreover, laminins are involved in the formation of premetastatic niches and new colonies. Endogenous expression of the α4 laminin chain stimulates proliferation of individualised circulating cancer cells in vitro and in vivo and facilitates micrometastasis.

Keywords

laminins laminin receptors metastasis tumor growth invasion extravasation lymphatic metastasis premetastatic niche formation epithelial–mesenchymal transition 

Abbreviations

BM

basement membrane

LN

laminin (in isoform designations)

CAF

cancer-associated fibroblast

CSC

cancer stem cell

EMT

epithelial–mesenchymal transition

FAK

focal adhesion kinase

FRC

fibroblastic reticular cell

MAPK

mitogenactivated protein kinase

MET

mesenchymal–epithelial transition

PSMA

prostate-specific membrane antigen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samatov T.R., Tonevitsky A.G., Schumacher U. 2013. Epithelial–mesenchymal transition: Focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol. Cancer. 12, 107.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Stacker S.A., Williams S.P., Karnezis T., Shayan R., Fox S.B., Achen M.G. 2014. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer. 14, 159–172.PubMedCrossRefGoogle Scholar
  3. 3.
    Lambert A.W., Pattabiraman D.R., Weinberg R.A. 2017. Emerging biological principles of metastasis. Cell. 168, 670–691.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Qin Y., Rodin S., Simonson O.E., Hollande F. 2017. Laminins and cancer stem cells: Partners in crime? Semin. Cancer Biol. 45, 3–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Jayadev R., Sherwood D.R. 2017. Basement membranes. Curr. Biol. 27, R207–R211.PubMedCrossRefGoogle Scholar
  6. 6.
    Durbeej M. 2010. Laminins. Cell Tissue Res. 339, 259–268.PubMedCrossRefGoogle Scholar
  7. 7.
    Domogatskaya A., Rodin S., Tryggvason K. 2012. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28, 523–553.PubMedCrossRefGoogle Scholar
  8. 8.
    Ramovs V., te Molder L., Sonnenberg A. 2017. The opposing roles of laminin-binding integrins in cancer. Matrix Biol. 57–58, 213–243.PubMedCrossRefGoogle Scholar
  9. 9.
    Stipp C.S. 2010. Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev. Mol. Med. 12, e3.CrossRefGoogle Scholar
  10. 10.
    Flanagan K., Fitzgerald K., Baker J., et al. 2012. Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One. 7, e40443.CrossRefGoogle Scholar
  11. 11.
    Miyazaki K. 2006. Laminin-5 (laminin-332): Unique biological activity and role in tumor growth and invasion. Cancer Sci. 97, 91–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Spaderna S., Schmalhofer O., Hlubek F., et al. 2006. A Transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 131, 830–840.PubMedCrossRefGoogle Scholar
  13. 13.
    Marinkovich M.P. 2007. Tumour microenvironment: Laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer. 7, 370–380.PubMedCrossRefGoogle Scholar
  14. 14.
    Mizushima H., Hirosaki T., Miyata S., et al. 2002. Expression of laminin-5 enhances tumorigenicity of human fibrosarcoma cells in nude mice. Jpn. J. Cancer Res. 93, 652–659.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    De Arcangelis A., Lefebvre O., Mchine-Neuville A., et al. 2001. Overexpression of laminin α1 chain in colonic cancer cells induces an increase in tumor growth. Int. J. Cancer. 94, 44–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Mammadova-Bach E., Rupp T., Jivkov I., et al. 2017. Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinoma. bioRxiv. http://dx.doi.org/.doi 10.1101/099465.Google Scholar
  17. 17.
    Kato K., Shiga K., Yamaguchi K., et al. 2006. Plasmamembrane-associated sialidase (NEU3) differentially regulates integrin-mediated cell proliferation through laminin-and fibronectin-derived signalling. Biochem. J. 394, 647–656.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ross J.B., Huh D., Noble L.B., Tavazoie S.F. 2015. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer. Nat. Cell Biol. 17, 651–664.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chaffer C.L., Weinberg R.A. 2011. A perspective on cancer cell metastasis. Science. 331, 1559–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Magee J.A., Piskounova E., Morrison S.J. 2012. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell. 21, 283–296.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vaiopoulos A.G., Kostakis I.D., Koutsilieris M., Papavassiliou A.G. 2012. Colorectal cancer stem cells. Stem Cells. 30, 363–371.PubMedCrossRefGoogle Scholar
  22. 22.
    Medema J.P. 2013. Cancer stem cells: The challenges ahead. Nat. Cell Biol. 15, 338–344.PubMedCrossRefGoogle Scholar
  23. 23.
    Chang C., Goel H.L., Gao H., et al. 2015. A laminin 511 matrix is regulated by Taz and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes Dev. 29, 1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kobayashi Y., Nakajima T., Saku T. 1995. Loss of basement membranes in the invading front of O-1N, hamster squamous cell carcinoma with high potential of lymph node metastasis: An immunohistochemical study for laminin and type IV collagen. Pathol. Int. 45, 327–334.PubMedCrossRefGoogle Scholar
  25. 25.
    Gu J., Sumida Y., Sanzen N., Sekiguchi K. 2001. Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130-Cas-CrkII-DOCK180 pathway. J. Biol. Chem. 276, 27090–27097.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou H., Kramer R.H. 2005. Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J. Biol. Chem. 280, 10624–10635.PubMedCrossRefGoogle Scholar
  27. 27.
    Rousselle P., Beck K. 2013. Laminin 332 processing impacts cellular behavior. Cell Adhes. Migr. 7, 122–134.CrossRefGoogle Scholar
  28. 28.
    Nakashima Y., Kariya Y., Yasuda C., Miyazaki K. 2005. Regulation of cell adhesion and type VII collagen binding by the β3 chain short arm of laminin-5: Effect of its proteolytic cleavage. J. Biochem. 138, 539–552.PubMedCrossRefGoogle Scholar
  29. 29.
    Decline F., Rousselle P. 2001. Keratinocyte migration requires alpha2beta1 integrin-mediated interaction with the laminin 5 gamma2 chain. J. Cell Sci. 114, 811–823.PubMedGoogle Scholar
  30. 30.
    Wang H., Leavitt L., Ramaswamy R., Rapraeger A.C. 2010. Interaction of syndecan and α6β4 integrin cytoplasmic domains: Regulation of ErbB2-mediated integrin activation. J. Biol. Chem. 285, 13569–13579.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bachy S., Letourneur F., Rousselle P. 2008. Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J. Cell. Physiol. 214, 238–249.PubMedCrossRefGoogle Scholar
  32. 32.
    Ogawa T., Tsubota Y., Hashimoto J., et al. 2007. The short arm of laminin γ2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin β4 chain. Mol. Biol. Cell. 18, 1621–1633.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schenk S., Hintermann E., Bilban M., et al. 2003. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 161, 197–209.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tunggal L., Ravaux J., Pesch M., et al. 2002. Defective laminin 5 processing in cylindroma cells. Am. J. Pathol. 160, 459–468.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Marinkovich M.P., Lunstrum G.P., Burgeson R.E. 1992. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J. Biol. Chem. 267, 17900–17906.PubMedGoogle Scholar
  36. 36.
    Tran M., Rousselle P., Nokelainen P., et al. 2008. Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res. 68, 2885–2894.PubMedCrossRefGoogle Scholar
  37. 37.
    Frank D.E., Carter W.G. 2004. Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J. Cell Sci. 117, 1351–1363.PubMedCrossRefGoogle Scholar
  38. 38.
    Walko G., Castañón M.J., Wiche G. 2015. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 360, 363–378.PubMedCrossRefGoogle Scholar
  39. 39.
    Alanko J., Mai A., Jacquemet G., et al. 2015. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 17, 1412–1421.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chartier N.T. 2006. Laminin-5-integrin interaction signals through PI 3-kinase and Rac1b to promote assembly of adherens junctions in HT-29 cells. J. Cell Sci. 119, 31–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Schreider C., Peignon G., Thenet S., et al. 2002. Integrin-mediated functional polarization of Caco-2 cells through E-cadherin–actin complexes. J. Cell Sci. 115, 543–552.PubMedGoogle Scholar
  42. 42.
    Kariya Y., Kato R., Itoh S., et al. 2008. N-glycosylation of laminin-332 regulates its biological functions: A novel function of the bisecting GlcNAc. J. Biol. Chem. 283, 33036–33045.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kim B.G., Gao M.-Q., Choi Y.P., et al. 2012. Invasive breast cancer induces laminin-332 upregulation and integrin β4 neoexpression in myofibroblasts to confer an anoikis-resistant phenotype during tissue remodeling. Breast Cancer Res. 14, R88.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wondimu Z., Geberhiwot T., Ingerpuu S., et al. 2004. An endothelial laminin isoform, laminin 8 (α4β1γ1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood. 104, 1859–1866.PubMedCrossRefGoogle Scholar
  45. 45.
    Ishikawa T., Wondimu Z., Oikawa Y., et al. 2014. Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biol. 38, 69–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723.PubMedCrossRefGoogle Scholar
  47. 47.
    Khazenzon N.M., Ljubimov A. V, Lakhter A.J., et al. 2003. Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Mol. Cancer Ther. 2, 985–994.PubMedGoogle Scholar
  48. 48.
    Zhang Z.Y., Li X.S, Zhao W., et al. 2015. Mp47-02 microRNA Mir-200B is down-regulated and suppresses metastasis by targeting Lama4 in renal cell carcinoma. J. Urol. 193, e552–e553.CrossRefGoogle Scholar
  49. 49.
    Oikawa Y., Hansson J., Sasaki T., et al. 2011. Melanoma cells produce multiple laminin isoforms and strongly migrate on α5 laminin(s) via several integrin receptors. Exp. Cell Res. 317, 1119–1133.PubMedCrossRefGoogle Scholar
  50. 50.
    Senyürek I., Kempf W.E., Klein G., et al. 2014. Processing of laminin α chains generates peptides involved in wound healing and host defense. J. Innate Immun. 6, 467–484.PubMedCrossRefGoogle Scholar
  51. 51.
    Adair-Kirk T.L., Atkinson J.J., Kelley D.G., et al. 2005. A chemotactic peptide from laminin alpha 5 functions as a regulator of inflammatory immune responses via TNFα-mediated signaling. J. Immunol. 174, 1621–1629.PubMedCrossRefGoogle Scholar
  52. 52.
    Patarroyo M., Tryggvason K., Virtanen I. 2002. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol. 12, 197–207.PubMedCrossRefGoogle Scholar
  53. 53.
    Stenzel D., Franco C.A., Estrach S., et al. 2011. Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep. 12, 1135–1143.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Simon-Assmann P., Orend G., Mammadova-Bach E., Spenlé C., Lefebvre O. 2011. Role of laminins in physiological and pathological angiogenesis. Int. J. Dev. Biol. 55, 455–465.PubMedCrossRefGoogle Scholar
  55. 55.
    Song J., Zhang X., Buscher K., et al. 2017. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269.PubMedCrossRefGoogle Scholar
  56. 56.
    Conway R.E., Rojas C., Alt J., et al. 2016. Prostatespecific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 19, 487–500.PubMedCrossRefGoogle Scholar
  57. 57.
    Wernicke A.G., Kim S., Liu H., Bander N.H., Pirog E.C. 2017. Prostate-specific membrane antigen (PSMA) expression in the neovasculature of gynecologic malignancies. Appl. Immunohistochem. Mol. Morphol. 25, 271–276.PubMedCrossRefGoogle Scholar
  58. 58.
    Conway R.E., Joiner K., Patterson A., et al. 2013. Prostate specific membrane antigen produces proangiogenic laminin peptides downstream of matrix metalloprotease-2. Angiogenesis. 16, 847–860.PubMedCrossRefGoogle Scholar
  59. 59.
    Estrach S., Cailleteau L., Franco C.A., et al. 2011. Laminin-binding integrins induce Dll4 expression and notch signaling in endothelial cells. Circ. Res. 109, 172–182.PubMedCrossRefGoogle Scholar
  60. 60.
    Köhler S., Ullrich S., Richter U., Schumacher U. 2010. E-/P-selectins and colon carcinoma metastasis: First in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br. J. Cancer. 102, 602–609.PubMedCrossRefGoogle Scholar
  61. 61.
    McEver R.P., Zhu C. 2010. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Xia L., Sperandio M., Yago T.,et al. 2002. P-selectin glycoprotein ligand-1-deficient mice have impaired leukocyte tethering to E-selectin under flow. J. Clin. Invest. 109, 939–950.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Reymond N., d’Água B.B., Ridley A.J. 2013. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer. 13, 858–870.PubMedCrossRefGoogle Scholar
  64. 64.
    Schnoor M., Alcaide P., Voisin M.B., Van Buul J.D. 2015. Crossing the vascular wall: Common and unique mechanisms exploited by different leukocyte subsets during extravasation. Mediators Inflamm. 2015.Google Scholar
  65. 65.
    Vestweber D. 2015. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol. 15, 692–704.PubMedCrossRefGoogle Scholar
  66. 66.
    Strell C., Entschladen F. 2008. Extravasation of leukocytes in comparison to tumor cells. Cell Commun. Signal. 6, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Gorfu G., Virtanen I., Hukkanen M., et al. 2008. Laminin isoforms of lymph nodes and predominant role of 5-laminin(s) in adhesion and migration of blood lymphocytes. J. Leukoc. Biol. 84, 701–712.PubMedCrossRefGoogle Scholar
  68. 68.
    Di Russo J., Luik A., Yousif L., et al. 2017. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J. 36, 183–201.PubMedCrossRefGoogle Scholar
  69. 69.
    The UniProt Consortium. 2017. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169.CrossRefGoogle Scholar
  70. 70.
    Lampe P.D., Nguyen B.P., Gil S., et al. 1998. Cellular interaction of integrin α3β1 with laminin 5 promotes gap junctional communication. J. Cell Biol. 143, 1735–47.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Fennewald S.M., Kantara C., Sastry S.K., Resto V.A. 2012. Laminin interactions with head and neck cancer cells under low fluid shear conditions lead to integrin activation and binding. J. Biol. Chem. 287, 21058–21066.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wong S.Y., Hynes R.O. 2006. Lymphatic or hematogenous dissemination: Perspective how does a metastatic tumor cell decide? Cell Cycle. 5, 812–817.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Oh K.H., Choi J., Woo J.S., et al. 2017. Role of laminin 332 in lymph node metastasis of papillary thyroid carcinoma. Auris Nasus Larynx. 44, 729–734.PubMedCrossRefGoogle Scholar
  74. 74.
    Willard-Mack C.L. 2006. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 34, 409–424.PubMedCrossRefGoogle Scholar
  75. 75.
    Malhotra D., Fletcher A.L., Astarita J., et al. 2012. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sixt M., Kanazawa N., Selg M., et al. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 22, 19–29.PubMedCrossRefGoogle Scholar
  77. 77.
    Burtin P., Chavanel G., Foidart J.M., Andre J. 1983. Alterations of the basement membrane and connective tissue antigens in human metastatic lymph nodes. Int. J. Cancer. 31, 719–726.PubMedCrossRefGoogle Scholar
  78. 78.
    Warren K.J., Iwami D., Harris D.G., et al. 2014. Laminins affect T cell trafficking and allograft fate. J. Clin. Invest. 124, 2204–2218.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Girard J.-P., Moussion C., Förster R. 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773.PubMedCrossRefGoogle Scholar
  80. 80.
    Stein J. V, F. Gonzalez S. 2017. Dynamic intravital imaging of cell-cell interactions in the lymph node. J. Allergy Clin. Immunol. 139, 12–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Gasteiger G., Ataide M., Kastenmüller W. 2016. Lymph node: An organ for T-cell activation and pathogen defense. Immunol. Rev. 271, 200–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Geberhiwot T., Assefa D., Kortesmaa J., et al. 2001. Laminin-8 (α4β1γ1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation. J. Cell Sci. 114, 423–433.PubMedGoogle Scholar
  83. 83.
    Simon T., Bromberg J.S. 2017. Regulation of the immune system by laminins. Trends Immunol. 38, 858–871.PubMedCrossRefGoogle Scholar
  84. 84.
    Chaffer C.L., San Juan B.P., Lim E., Weinberg R.A. 2016. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35, 645–654.PubMedCrossRefGoogle Scholar
  85. 85.
    Pattabiraman D.R., Weinberg R.A. 2016. Targeting the epithelial-to-mesenchymal transition: The case for differentiation-based therapy. Cold Spring Harbor Symp. Quant. Biol. 81, 11–19.PubMedCrossRefGoogle Scholar
  86. 86.
    Muschler J., Lochter A., Roskelley C.D., et al. 1999. Division of labor among the α6β4 integrin, β1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Mol. Biol. Cell. 10, 2817–2828.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Roskelley C.D., Desprez P.Y., Bissell M.J. 1994. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl. Acad. Sci. U. S. A. 91, 12378–12382.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Streuli C.H., Bissell M.J. 1990. Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110, 1405–1415.PubMedCrossRefGoogle Scholar
  89. 89.
    De Arcangelis A., Neuville P., Boukamel R., et al. 1996. Inhibition of laminin α1-chain expression leads to alteration of basement membrane assembly and cell differentiation. J. Cell Biol. 133, 417–430.PubMedCrossRefGoogle Scholar
  90. 90.
    Sohara N., Znoyko I., Levy M.T., Trojanowska M., Reuben A. 2002. Reversal of activation of human myofibroblast-like cells by culture on a basement membrane-like substrate. J. Hepatol. 37, 214–221.PubMedCrossRefGoogle Scholar
  91. 91.
    Thannickal V.J., Lee D.Y., White E.S., et al. 2003. Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J. Biol. Chem. 278, 12384–12389.PubMedCrossRefGoogle Scholar
  92. 92.
    Lathia J.D., Li M., Hall P.E., et al. 2012. Laminin α2 enables glioblastoma stem cell growth. Ann. Neurol. 72, 766–778.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Horejs C.-M., Serio A., Purvis A., et al. 2014. Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 111, 5908–5913.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zeisberg M., Neilson E.G. 2009. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Drake J.M., Barnes J.M., Madsen J.M., et al. 2010. ZEB1 coordinately regulates laminin-332 and β4 integrin expression altering the invasive phenotype of prostate cancer cells. J. Biol. Chem. 285, 33940–33948.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Richter P., Umbreit C., Franz M., et al. 2011. EGF/TGF-β1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial-mesenchymal transition cell phenotype expressing laminin 332. J. Oral Pathol. Med. 40, 46–54.PubMedCrossRefGoogle Scholar
  97. 97.
    Takkunen M., Ainola M., Vainionpää N., et al. 2008. Epithelial-mesenchymal transition downregulates laminin α5 chain and upregulates laminin α4 chain in oral squamous carcinoma cells. Histochem. Cell Biol. 130, 509–525.PubMedCrossRefGoogle Scholar
  98. 98.
    Canel M., Serrels A., Frame M.C., Brunton V.G. 2013. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J. Cell Sci. 126, 393–401.PubMedCrossRefGoogle Scholar
  99. 99.
    Nieto M.A., Huang R.Y.-J., Jackson R.A., Thiery J.P. 2016. EMT: 2016. Cell. 166, 21–45.PubMedCrossRefGoogle Scholar
  100. 100.
    Chen Q.K., Lee K., Radisky D.C., Nelson C.M. 2013. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation. 86, 126–132.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rodin S., Domogatskaya A., Ström S., et al. 2010. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol. 28, 611–615.PubMedCrossRefGoogle Scholar
  102. 102.
    Rodin S., Antonsson L., Niaudet C., et al. 2014. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xenofree environment. Nat. Commun. 5, 1–13.CrossRefGoogle Scholar
  103. 103.
    Vanharanta S., Massagué J. 2013. Origins of metastatic traits. Cancer Cell. 24, 410–421.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kaushik S., Pickup M.W., Weaver V.M. 2016. From transformation to metastasis: Deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev. 35, 655–667.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Peinado H., Zhang H., Matei I.R., et al. 2017. Premetastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer. 17, 302–317.PubMedCrossRefGoogle Scholar
  106. 106.
    Elkabets M., Gifford A.M., Scheel C., et al. 2011. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J. Clin. Invest. 121, 784–799.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Syn N., Wang L., Sethi G., et al. 2016. Exosomemediated metastasis: From epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol. Sci. 37, 606–617.PubMedCrossRefGoogle Scholar
  108. 108.
    Hoshino A., Costa-Silva B., Shen T.-L., et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature. 527, 329–335.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Govaere O., Wouters J., Petz M., et al. 2016. Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J. Hepatol. 64, 609–617.PubMedCrossRefGoogle Scholar
  110. 110.
    Samatov T.R., Shkurnikov M.U., Tonevitskaya S.A., Tonevitsky A.G. 2015. Modelling the metastatic cascade by in vitro microfluidic platforms. Prog. Histochem. Cytochem. 49, 21–29.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen M.B., Lamar J.M., Li R., et al. 2016. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 76, 2513–2524.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Scientific Research Center BioKlinikumMoscowRussia
  2. 2.Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations