Molecular Biology

, Volume 52, Issue 3, pp 335–349 | Cite as

Proteoforms: Methods of Analysis and Clinical Prospects

  • O. I. Kiseleva
  • A. V. Lisitsa
  • E. V. Poverennaya
Reviews

Abstract

A critical analysis of proteomes provides a basis for understanding the operation of complex biochemical systems. A personalized approach to therapy takes into account biological uniqueness of each patient at genome, transcriptome, and proteome levels, and is a priority area in molecular medicine. The identification of proteoforms, which have dramatic impact on the phenotype of a disease, is a fundamental task of personal molecular profiling. Considerable progress of proteomic approaches presented new avenues for accurate, specific, and high-performance protein analysis. Thus, the identification of new efficient biomarkers can be expected based on studies of aberrant proteoforms associated with various diseases.

Keywords

proteoforms proteome heterogeneity human proteome biomarkers 

Abbreviations

SAP

single amino acid polymorphism

PTM

post-translational modification

SNP

single nucleotide polymorphism

ELISA

enzyme-linked immunosorbent assay

SRM

selected reaction monitoring

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelleher N.L. 2012. A cell-based approach to the human proteome project. J. Am. Soc. Mass Spectrom. 23, 1617–1624.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ezkurdia I., del Pozo A., Frankish A., et al. 2012. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol. Biol. Evol. 29, 2265–2283.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Smith C.W., Valcaŕcel J. 2000. Alternative pre-mRNA splicing: The logic of combinatorial control. Trends Biochem. Sci. 25, 381–388.PubMedCrossRefGoogle Scholar
  4. 4.
    Ezkurdia I., Rodriguez J.M., Carillo-de Santa Pau E., Valencia A., Tress M.L. 2015. Most highly expressed protein-coding genes have a single dominant isoform. J. Proteome Res. 14, 1880–1887.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mucoz J., Heck A.J.R. 2014. From the human genome to the human proteome. Angew. Chem. Int. Ed. Engl. 53, 10864–10866.CrossRefGoogle Scholar
  6. 6.
    Xu Q., Modrek B., Lee C. 2002. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res. 30, 3754–3766.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hanahan D., Weinberg R.A. 2011. Hallmarks of cancer: The next generation. Cell. 144, 646–674.PubMedCrossRefGoogle Scholar
  8. 8.
    Martincorena I., Campbell P.J. 2015. Somatic mutation in cancer and normal cells. Science. 349, 1483–1489.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim M.S., Pinto S.M., Getnet D., et al. 2014. A draft map of the human proteome. Nature. 509, 575–581.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wilhelm M., Schlegl J., Hahne H., et al. 2014. Massspectrometry-based draft of the human proteome. Nature. 509, 582–587.PubMedCrossRefGoogle Scholar
  11. 11.
    Archakov A., Zgoda V., Kopylov A., et al. 2012. Chromosome-centric approach to overcoming bottlenecks in the Human Proteome Project. Expert Rev. Proteomics. 9, 667–676.PubMedCrossRefGoogle Scholar
  12. 12.
    Lisitsa A.V., Poverennaya E.V., Ponomarenko E.A., Archakov A.I. 2015. The width of the human plasma proteome compared with a cancer cell line and bacteria. J. Biomol. Res. Ther. 4, 10–13.CrossRefGoogle Scholar
  13. 13.
    Ponomarenko E.A., Poverennaya E.V., Ilgisonis E.V., et al. 2016. The size of the human proteome: the width and depth. Int. J. Anal. Chem. 2016, ID 7436849. doi 10.1155/2016/7436849Google Scholar
  14. 14.
    Cargill M., Altshuler D., Ireland J., et al. 1999. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22, 231–238.PubMedCrossRefGoogle Scholar
  15. 15.
    1000 Genomes Project Consortium, Abecasis G.R., Altshuler, D., Auton A., Brooks L.D., et al. 2010. A map of human genome variation from populationscale sequencing. Nature. 467, 1061–1073.CrossRefGoogle Scholar
  16. 16.
    Roach J.C., Glusman G., Smit A.F.A., et al. 2010. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 328, 636–639.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhang Z., Miteva M.A., Wang L., Alexov E. 2012. Analyzing effects of naturally occurring missense mutations. Comput. Math. Methods Med. 2012, 805827.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gautieri A., Vesentini S., Redaelli A., Buehler M.J. 2012. Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network. RSC Adv. 2, 3890.CrossRefGoogle Scholar
  19. 19.
    Fujiwara H., Tatsumi K., Tanaka S., et al. 2000. A novel V59E missense mutation in the sodium iodide symporter gene in a family with iodide transport defect iodide. Thyroid. 10, 471–474.PubMedGoogle Scholar
  20. 20.
    Shirley B.A., Stanssens P., Hahn U., Pace C.N. 1992. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry. 31 (3), 725–732.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Z., Moult J. 2001. SNPs, protein structure, and disease. Hum. Mutat. 17, 263–270.PubMedCrossRefGoogle Scholar
  22. 22.
    Vogelstein B., Papadopoulos N., Velculescu V.E., et al. 2013. Cancer genome landscapes. Science. 339, 1546–1558.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Abhishek N., Vihinen M. 2015. Harmful somatic amino acid substitutions affect key pathways in cancers. BMC Med. Genomics. 8, 1–12.CrossRefGoogle Scholar
  24. 24.
    Ng P.C., Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet. 7, 61–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Stenson P.D., Ball E., Howells K., et al. 2008. Human Gene Mutation Database: Towards a comprehensive central mutation database. J. Med. Genet. 45, 122–124.Google Scholar
  26. 26.
    Maglott D., Amberger J.S., Hamosh A. 2002. Online Mendelian Inheritance in Man (OMIM): A directory of human genes and genetic disorders. Nucleic Acids Res. 30, 1–7.CrossRefGoogle Scholar
  27. 27.
    Kutlar A. 2007. Sickle cell disease: A multigenic perspective of a single gene disorder. Hemoglobin. 31, 209–224.PubMedCrossRefGoogle Scholar
  28. 28.
    Hart J.R., Zhang Y., Liao L., et al. 2014. The butterfly effect in cancer: A single base mutation can remodel the cell. Proc. Natl. Acad. Sci. U. S. A. 112, 1131–1136.CrossRefGoogle Scholar
  29. 29.
    Wang E.T., Sandberg R., Luo S., et al. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature. 456, 470–476.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tress M.L., Abascal F., Valencia A. 2017. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 42, 98–110.PubMedCrossRefGoogle Scholar
  31. 31.
    Buljan M., Chalancon G., Eustermann S., et al. 2012. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell. 46, 871–883.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ellis J.D., Barrios-Rodiles M., Colak R., et al. 2012. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell. 46, 884–892.PubMedCrossRefGoogle Scholar
  33. 33.
    Melamud E., Moult J. 2009. Stochastic noise in splicing machinery. Nucleic Acids Res. 37, 4873–4886.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Faustino N.A., Cooper T., Andre N. 2003. PremRNA splicing and human disease. Genes Dev. 17, 419–437.PubMedCrossRefGoogle Scholar
  35. 35.
    Krawczak M., Reiss J., Cooper D. 1992. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: Causes and consequences. Hum. Genet. 90, 41–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Lacovich V., Espindola S.L., Alloatti M., et al. 2017. Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37, 58–69.PubMedCrossRefGoogle Scholar
  37. 37.
    Bonomi S., Gallo S., Catillo M., et al. 2013. Oncogenic alternative splicing switches: Role in cancer progression and prospects for therapy. Int. J. Cell Biol. 2013, 962038.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wei J., Zaika E., Zaika A. 2012. P53 family: Role of protein isoforms in human cancer. J. Nucleic Acids. 2012, 687359. doi 10.1155/2012/687359PubMedCrossRefGoogle Scholar
  39. 39.
    Hofstetter G., Berger A., Fiegl H., et al. 2010. Alternative splicing of p53 and p73: The novel p53 splice variant p53delta is an independent prognostic marker in ovarian cancer. Oncogene. 29, 1997–2004.PubMedCrossRefGoogle Scholar
  40. 40.
    Marabese M., Marchini S., Marrazzo E., et al. 2011. Expression levels of p53 and p73 isoforms in stage I and stage III ovarian cancer. Eur. J. Cancer. 4, 131–141.Google Scholar
  41. 41.
    Flaherty K., Puzanov I., Kim K., et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nazarian R., Shi H., Wang Q., et al. 2011. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 468, 973–977.CrossRefGoogle Scholar
  43. 43.
    Poulikakos P.I., Persaud Y., Janakiraman M., et al. 2011. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 480, 387–390.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Walsh C.T., Garneau-Tsodikova S., Gatto G.J. 2005. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372.CrossRefGoogle Scholar
  45. 45.
    Komander D. 2009. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937–953.PubMedCrossRefGoogle Scholar
  46. 46.
    Vidal C.J. 2011. Post-Translational Modifications in Health and Disease. New York: Springer.CrossRefGoogle Scholar
  47. 47.
    Anderson N.L. 2010. The clinical plasma proteome: A survey of clinical assays for proteins in plasma and serum. Clin. Chem. 56, 177–185.PubMedCrossRefGoogle Scholar
  48. 48.
    Weissman A.M. 2001. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169–178.PubMedCrossRefGoogle Scholar
  49. 49.
    López-Otín C., Blasco M.A., Partridge L., et al. 2013. The hallmarks of aging. Cell. 153, 1194–1217.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Powers E.T., Morimoto R.I., Dillin A., et al. 2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991.PubMedCrossRefGoogle Scholar
  51. 51.
    Thomas S.N., Cripps D., Yang A.J. 2009. Proteomic analysis of protein phosphorylation and ubiquitination in Alzheimer’s disease. Meth. Mol. Biol. 566, 109–121.CrossRefGoogle Scholar
  52. 52.
    Pagel O., Loroch S., Sickmann A., Zahedi R.P. 2015. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev. Proteomics. 12, 235–253.Google Scholar
  53. 53.
    Kashuba V.I., Li J., Wang F., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. U. S. A. 101, 4906–4911.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Haas-Kogan D.A., Prados M.D., Tihan T., et al. 2005. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl. Cancer Inst. 97, 880–887.PubMedCrossRefGoogle Scholar
  55. 55.
    Benne R., Van den Burg J., Brakenhoff J.P., et al. 1986. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 46, 819–826.PubMedCrossRefGoogle Scholar
  56. 56.
    Gott J.M., Emeson R.B. 2000. Functions and mechanisms of RNA editing. Annu. Rev. Genet. 34, 499–531.PubMedCrossRefGoogle Scholar
  57. 57.
    Athanasiadis A., Rich A., Maas S. 2004. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391.CrossRefGoogle Scholar
  58. 58.
    Anant S., Davidson N.O. 2001. Molecular mechanisms of apolipoprotein B mRNA editing. Curr. Opin. Lipidol. 12, 159–165.PubMedCrossRefGoogle Scholar
  59. 59.
    Tariq A., Jantsch M.F. 2012. Transcript diversification in the nervous system: a to I RNA editing in CNS function and disease development. Front. Neurosci. 6, 99.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nishikura K. 2010. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dominissini D., Moshitch-Moshkovitz S., Amariglio N., Rechavi G. 2011. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis. 32, 1569–1577.PubMedCrossRefGoogle Scholar
  62. 62.
    Beghini A., Ripamonti C.B., Peterlongo P., et al. 2000. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum. Mol. Genet. 9, 2297–2304.PubMedCrossRefGoogle Scholar
  63. 63.
    Ranieri M., Brajkovic S., Riboldi G., et al. 2013. Mitochondrial fusion proteins and human diseases. Neurol. Res. Int. 2013, 293893.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mitelman F., Johansson B., Mertens F. 2007. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer. 7, 233–245.PubMedCrossRefGoogle Scholar
  65. 65.
    Modi H., McDonald T., Chu S., et al. 2007. Role of BCR/ABL gene-expression levels in determining the phenotype and imatinib sensitivity of transformed human hematopoietic cells. Blood. 109, 5411–5421.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Demichelis F., Fall K., Perner S., et al. 2007. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 26, 4596–4599.PubMedCrossRefGoogle Scholar
  67. 67.
    Baldo B.A. 2015. Chimeric fusion proteins used for therapy: Indications, mechanisms, and safety. Drug Saf. 38, 455–479.PubMedCrossRefGoogle Scholar
  68. 68.
    Cobb B.A., Petrash J.M. 2000. Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts. Biochemistry. 39, 15791–15798.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fiorelli T., Kirouac L., Padmanabhan J. 2013. Altered processing of amyloid precursor protein in cells undergoing apoptosis. PLoS One. 8, e57979.CrossRefGoogle Scholar
  70. 70.
    O’Brien R.J., Wong P.C. 2011. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 34, 185–204.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Iwawaki T., Oikawa D. 2013. The role of the unfolded protein response in diabetes mellitus. Semin. Immunopathol. 35, 333–350.PubMedCrossRefGoogle Scholar
  72. 72.
    Schmidt B., Selmer T., Ingendoh A., von Figura K. 1995. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell. 82, 271–278.PubMedCrossRefGoogle Scholar
  73. 73.
    Paik S., Shak S., Tang G., et al. 2004. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826.PubMedCrossRefGoogle Scholar
  74. 74.
    Bedard P.L., Mook S., Piccart-Gebhart M.J., et al. 2009. MammaPrint 70-gene profile quantifies the likelihood of recurrence for early breast cancer. Expert Opin. 3, 193–205.Google Scholar
  75. 75.
    Ruggles K.V., Tang Z., Wang X., et al. 2015. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol. Cell. Proteomics. 15, 1060–1071. doi 10.1074/mcp.M115.056226PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Karve T.M., Cheema A.K. 2011. Small changes, huge impact: The role of protein posttranslational modifications in cellular homeostasis and disease. J. Amino Acids. 2011, 207691. doi 10.4061/2011/207691PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Khan S., Bennit H.F., Turay D., et al. 2014. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer. 14, 176.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Frampton J.P., White J.B., Simon A.B., et al. 2014. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA. Sci. Rep. 4, 871–874.Google Scholar
  79. 79.
    Tighe P.J., Ryder R.R., Todd I., Fairclough L.C. 2015. ELISA in the multiplex era: Potentials and pitfalls. Proteomics Clin. Appl. 9, 406–422.PubMedCrossRefGoogle Scholar
  80. 80.
    Vernes J.-M., Meng Y.G. 2015. Detection and quantification of VEGF isoforms by ELISA. Methods Mol. Biol. 1332, 25–37.PubMedCrossRefGoogle Scholar
  81. 81.
    Bartel F., Schulz J., Böhnke A., et al. 2005. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int. J. Cancer. 117, 469–475.PubMedCrossRefGoogle Scholar
  82. 82.
    Maruyama K., Akiyama M., Kokame K., et al. 2015. ELISA-based detection system for protein S K196E mutation, a genetic risk factor for venous thromboembolism. PLoS One. 10, 1–10.Google Scholar
  83. 83.
    Romero X., Cacete J.D., Engel P. 2014. Determination of soluble tumor necrosis factor receptor 2 produced by alternative splicing. Methods Mol. Biol. 1155, 187–199.PubMedCrossRefGoogle Scholar
  84. 84.
    Sheehan K.M., Calvert V.S., Kay E.W., et al. 2005. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics. 4, 346–355.PubMedCrossRefGoogle Scholar
  85. 85.
    Petricoin E.F., Bichsel V.E., Calvert V.S., et al. 2005. Mapping molecular networks using proteomics: A vision for patient-tailored combination therapy. J. Clin. Oncol. 23, 3614–3621.PubMedCrossRefGoogle Scholar
  86. 86.
    Yang Y., Nan Y., Cai J., Xu J., et al. 2016. The Thr to Met substitution of amino acid 118 in hepatitis B virus surface antigen escapes from immune-assay-based screening of blood donors. J. Gen. Virol. 97, 1210–1217.PubMedCrossRefGoogle Scholar
  87. 87.
    Lisitsa A., Moshkovskii S., Chernobrovkin A., et al. 2014. Profiling proteoforms: Promising follow-up of proteomics for biomarker discovery. Expert Rev. Proteomics. 11, 121–129.PubMedCrossRefGoogle Scholar
  88. 88.
    Rezeli M., Végvári A., Fehniger T.E., et al. 2011. Moving towards high density clinical signature studies with a human proteome catalogue developing multiplexing mass spectrometry assay panels. J. Clin. Bioinforma. 1, 7. doi 10.1186/2043-9113-1-7PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Juncker D., Bergeron S., Laforte V., Li H. 2014. Cross-reactivity in antibody microarrays and multiplexed sandwich assays: shedding light on the dark side of multiplexing. Curr. Opin. Chem. Biol. 18, 29–37.PubMedCrossRefGoogle Scholar
  90. 90.
    Archakov A., Ivanov Y., Lisitsa A., Zgoda V. 2009. Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins. Proteomics. 9, 1326–1343.PubMedCrossRefGoogle Scholar
  91. 91.
    Rabilloud T., Lelong C. 2011. Two-dimensional gel electrophoresis in proteomics: A tutorial. J. Proteomics. 74, 1829–1841.PubMedCrossRefGoogle Scholar
  92. 92.
    Rogowska-Wrzesinska A., Le Bihan M.-C., Thaysen-Andersen M., Roepstorff P. 2013. 2D gels still have a niche in proteomics. J. Proteomics. 88, 4–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Jungblut P.R., Holzhütter H.G., Apweiler R., Schlüter H. 2008. The speciation of the proteome. Chem. Cent. J. 2, 16.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Barrabés S., Sarrats A., Fort E., et al. 2010. Effect of sialic acid content on glycoprotein pI analyzed by twodimensional electrophoresis. Electrophoresis. 31, 2903–2912.PubMedCrossRefGoogle Scholar
  95. 95.
    Naryzhny S.N., Zgoda V.G., Maynskova M.A., et al. 2016. Combination of virtual and experimental 2DE together with ESI LC-MS/MS gives a clearer view about proteomes of human cells and plasma. Electrophoresis. 37, 302–309.PubMedCrossRefGoogle Scholar
  96. 96.
    Naryzhny S.N., Lisitsa A.V., Zgoda V.G., et al. 2014. 2DE-based approach for estimation of number of protein species in a cell. Electrophoresis. 35, 895–900.PubMedCrossRefGoogle Scholar
  97. 97.
    Naryzhny S. 2016. Towards the full realization of 2DE power. Proteomes. 4, e33.PubMedCentralCrossRefGoogle Scholar
  98. 98.
    Unlü M., Morgan M.E., Minden J.S. 1997. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis. 18, 2071–2077.PubMedCrossRefGoogle Scholar
  99. 99.
    Collier T.S., Muddiman D.C. 2012. Analytical strategies for the global quantification of intact proteins. Amino Acids. 43, 1109–1117.PubMedCrossRefGoogle Scholar
  100. 100.
    Stephens A.N., Hannan N.J., Rainczuk A., et al. 2010. Post-translational modifications and protein-specific isoforms in endometriosis revealed by 2D DIGE. J. Proteome Res. 9, 2438–2449.PubMedCrossRefGoogle Scholar
  101. 101.
    Chung H.Y. 2011. Effects of SNPs using differentially expressed serum proteins at growth stages on average daily gain in pig. Mol. Biol. Rep. 38, 3777–3785.PubMedCrossRefGoogle Scholar
  102. 102.
    Huang H.L., Stasyk T., Morandell S., et al. 2006. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis. 27, 1641–1650.PubMedCrossRefGoogle Scholar
  103. 103.
    Wright E.P., Partridge M.A., Padula M.P., et al. 2014. Top-down proteomics: Enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection. Proteomics. 14, 872–889.PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang Y., Fonslow B.R., Shan B., et al. 2013. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Gavin A.-C., Aloy P., Grandi P., et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature. 440, 631–636.PubMedCrossRefGoogle Scholar
  106. 106.
    Veitinger M., Oehler R., Umlauf E., et al. 2014. A platelet protein biochip rapidly detects an Alzheimer’s disease-specific phenotype. Acta Neuropathol. 128, 665–677.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Shi Y., Xiang R., Horváth C., Wilkins J.A. 2004. The role of liquid chromatography in proteomics. J. Chromatogr. A. 1053, 27–36.PubMedCrossRefGoogle Scholar
  108. 108.
    Gatlin C.L., Eng J.K., Cross S.T., et al. 2000. Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal. Chem. Am. Chem. Soc. 72, 757–763.CrossRefGoogle Scholar
  109. 109.
    Brosch M., Saunders G.I., Frankish A., et al. 2011. Shotgun proteomics aids discovery of novel proteincoding genes, alternative splicing, and “resurrected” pseudogenes in the mouse genome. Genome Res. 21, 756–767.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Cesnik A.J., Shortreed M.R., Sheynkman G.M., et al. 2016. Human proteomic variation revealed by combining RNA-Seq proteogenomics and global posttranslational modification (G-PTM. search strategy. J. Proteome Res. 15, 800–808.PubMedCrossRefGoogle Scholar
  111. 111.
    Bunger M.K., Cargile B.J., Sevinsky J.R., (2007. Detection and validation of non-synonymous coding SNPs from orthogonal analysis of shotgun proteomics data. J. Proteome Res. 6, 2331–2340.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang B., Wang J., Wang X., et al. 2014. Proteogenomic characterization of human colon and rectal cancer. Nature. 513, 382–387.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lichti C.F., Mostovenko E., Wadsworth P., et al. 2015. Systematic identification of single amino acid polymorphisms in glioma stem cell-derived chromosome 19 proteins. J. Proteome Res. 14, 778–786.PubMedCrossRefGoogle Scholar
  114. 114.
    Veenstra T.D. 2011. Where are all the biomarkers? Expert Rev. Proteomics. 8, 681–683.PubMedCrossRefGoogle Scholar
  115. 115.
    Nedelkov D., Kiernan U.A., Niederkofler E.E., et al. 2005. Investigating diversity in human plasma proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 10852–10857.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Resing K.A., Meyer-Arendt K., Mendoza A.M., et al. 2004. Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal. Chem. 76, 3556–3568.PubMedCrossRefGoogle Scholar
  117. 117.
    Chen Y., Zhang J., Xing G., Zhao Y. 2009. Mascotderived false positive peptide identifications revealed by manual analysis of tandem mass spectra. J. Proteome Res. 8, 3141–3147.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Stevens S.M., Jr., Prokai-Tatrai K., Prokai L. 2008. Factors that contribute to the misidentification of tyrosine nitration by shotgun proteomics. Mol. Cell Proteomics. 7, 2442–2451.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ahrné E., Müller M., Lisacek F. 2010. Unrestricted identification of modified proteins using MS/MS. Proteomics. 10, 671–686.PubMedCrossRefGoogle Scholar
  120. 120.
    Tran J.C., Zamdborg L., Ahlf D.R., et al. 2011. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature. 480, 254–258.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Meng F., Du Y., Miller L.M., et al. 2004. Molecularlevel description of proteins from Saccharomyces cerevisiae using quadrupole ft hybrid mass spectrometry for top down proteomics. Anal. Chem. Am. Chem. Soc. 76, 2852–2858.CrossRefGoogle Scholar
  122. 122.
    Roth M.J., Forbes A.J., Boyne M.T. 2nd., et al. 2005. Precise and parallel characterization of coding polymorphisms, alternative splicing, and modifications inhuman proteins by mass spectrometry. Mol. Cell. Proteomics. 4, 1002–1008.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Coelho Graça D., Lescuyer P., et al. 2012. Electron transfer dissociation mass spectrometry of hemoglobin on clinical samples. J. Am. Soc. Mass Spectrom. 23, 1750–1756.PubMedCrossRefGoogle Scholar
  124. 124.
    Jin Y., Peng Y., Lin Z., et al. 2016. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics. J. Muscle Res. Cell. Motil. 37, 41–52.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ahn Y.H., Ji E.S., Kwon K.H., et al. 2007. Protein phosphorylation analysis by site-specific argininemimic labeling in gel electrophoresis and matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 370, 77–86.PubMedCrossRefGoogle Scholar
  126. 126.
    Ntai I., LeDuc R.D., Fellers R.T., et al. 2016. Integrated bottom-up and top-down proteomics of patient-derived breast tumor xenografts. Mol. Cell. Proteomics. 15, 45–56.PubMedCrossRefGoogle Scholar
  127. 127.
    Whiteaker J.R., Lin C., Kennedy J., et al. 2011. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29, 625–634.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Paik Y.K., Omenn G.S., Uhlen M., et al. 2012. Standard guidelines for the chromosome-centric human proteome project. J. Proteome Res. 11, 2005–2013.PubMedCrossRefGoogle Scholar
  129. 129.
    Kusebauch U., Campbell D.S., Deutsch E.W., et al. 2016. Human SRMAtlas: A resource of targeted assays to quantify the complete human proteome. Cell. 166, 766–778.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Anderson L., Hunter C.L. 2006. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics. 5, 573–588.PubMedCrossRefGoogle Scholar
  131. 131.
    Kuzyk M.A., Smith D., Yang J., et al. 2009. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol. Cell. Proteomics. 8, 1860–1877.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wang Q., Chaerkady R., Wu J., et al. 2011. Mutant proteins as cancer-specific biomarkers. Proc. Natl. Acad. Sci. U. S. A. 108, 2444–2449.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Su Z.D., Sun L., Yu D.X., et al. 2011. Quantitative detection of single amino acid polymorphisms by targeted proteomics. J. Mol. Cell Biol. 3, 309–315.PubMedCrossRefGoogle Scholar
  134. 134.
    Wu J., Pungaliya P., Kraynov E., Bates B. 2012. Identification and quantification of osteopontin splice variants in the plasma of lung cancer patients using immunoaffinity capture and targeted mass spectrometry. Biomarkers. 17, 125–133.PubMedCrossRefGoogle Scholar
  135. 135.
    Mayor U., Peng J. 2012. Deciphering tissue-specific ubiquitylation by mass spectrometry. Methods Mol. Biol. 83, 65–80.CrossRefGoogle Scholar
  136. 136.
    Kettenbach A.N., Rush J., Gerber S.A. 2011. Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat. Protoc. 6, 175–186.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ossola R., Schiess R., Picotti P., et al. 2011. Biomarker validation in blood specimens by selected reaction monitoring mass spectrometry of N-glycosites. Methods Mol. Biol. 728, 179–194.PubMedCrossRefGoogle Scholar
  138. 138.
    Conlon K.P., Basrur V., Rolland D., et al. 2013. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer. Mol. Cell. Proteomics. 12, 2714–2723.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bogdanow B., Zauber H., Selbach M. 2016. Systematic errors in peptide and protein identification and quantification by modified peptides. Mol. Cell. Proteomics. 15, 2791–2801.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Karpova M.A., Karpov D.S., Ivanov M.V., et al. 2014. Exome-driven characterization of the cancer cell lines at the proteome level: The NCI-60 case study. J. Proteome Res. 13, 5551–5560.PubMedCrossRefGoogle Scholar
  141. 141.
    Sherman J., Molloy M.P., Burlingame A.L. 2012. Why complexity and entropy matter: Information, posttranslational modifications, and assay fidelity. Proteomics. 12, 1147–1150.PubMedCrossRefGoogle Scholar
  142. 142.
    Kondo T. 2014. Casting doubt on the traditional approach of cancer biomarker discovery through proteomics. Expert Rev. Proteomics. 11, 9–12.PubMedCrossRefGoogle Scholar
  143. 143.
    Sheynkman G.M., Shortreed M.R., Cesnik A.J., Smith L.M. 2016. Proteogenomics: Integrating nextgeneration sequencing and mass spectrometry to characterize human proteomic variation. Annu. Rev. Anal. Chem. 9, 521–545.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. I. Kiseleva
    • 1
  • A. V. Lisitsa
    • 1
  • E. V. Poverennaya
    • 1
  1. 1.Orekhovich Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations