Molecular Biology

, Volume 52, Issue 3, pp 323–334 | Cite as

Bispecific Antibodies: Formats and Areas of Application

  • E. A. Vasilenko
  • V. V. Mokhonov
  • E. N. Gorshkova
  • I. V. Astrakhantseva


Bispecific antibodies capable of simultaneously binding two targets have been studied for many years with a view to their implementation in clinical practice. Unique biological and pharmacological properties, as well as the diversity of their formats, make it possible to consider bispecific antibodies as promising agents for use in various procedures: from visualization of intracellular processes to targeted anticancer therapy. Bispecific antibodies help to determine more precisely the therapeutic target, thereby increasing the efficiency of therapy and reducing the probability of side effects. The present review describes the main formats of bispecific antibodies, methods for their generation, and possibilities for practical application.


bispecific antibody selective therapy gene engineering 



bispecific antibodies


single chain antibody variable fragment


major histocompatibility complex class I chain-related protein A


matrix metalloproteinases


tumor necrosis factor

HER2 and HER3

human epidermal growth factor receptors


rheumatoid arthritis


hepatocellular carcinoma


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nisonoff A., Rivers M.M. 1961. Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys. 93, 460–467.PubMedCrossRefGoogle Scholar
  2. 2.
    Kontermann R.E. 2005. Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol. Sin. 26 (1), 1–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Milstein C., Cuello A.C. 1983. Hybrid hybridomas and their use in immunohistochemistry. Nature. 305 (5934), 537–540.PubMedCrossRefGoogle Scholar
  4. 4.
    Suresh M.R., Cuello A.C., Milstein C. 1986. Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc. Natl. Acad. Sci. U. S. A. 83 (20), 7989–7993.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Reinagel M.L., Taylor R.P. 2000. Transfer of immune complexes from erythrocyte CR1 to mouse macrophages. J. Immunol. 164 (4), 1977–1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Helfrich W., Bremer E. 2014. Bifunctional antibody fragment-based fusion proteins for the targeted elimination of pathogenic T-cell subsets. In: Systemic Lupus Erythematosus: Methods and Protocols. Methods in Molecular Biology, vol. 1134. Eds. Eggleton P., Ward F.J. New York: Humana Press, pp. 79–93.Google Scholar
  7. 7.
    Bremer E., Abdulahad W.H., de Bruyn M., et al. 2011. Selective elimination of pathogenic synovial fluid T-cells from rheumatoid arthritis and juvenile idiopathic arthritis by targeted activation of Fas-apoptotic signaling. Immunol. Lett. 138, 161–168.PubMedCrossRefGoogle Scholar
  8. 8.
    Farrington G.K., Caram-Salas N., Haqqani A.S., et al. 2014. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 28, 4764–4778.PubMedCrossRefGoogle Scholar
  9. 9.
    Stanimirovic D., Kemmerich K., Haqqani A.S., Farrington G.K. 2014. Engineering and pharmacology of blood–brain barrier-permeable bispecific antibodies. Adv. Pharmacol. 71, 301–335.PubMedCrossRefGoogle Scholar
  10. 10.
    Nettelbeck D.M., Rivera A.A., Kupsch J., et al. 2004. Retargeting of adenoviral infection to melanoma: Combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int. J. Cancer. 108, 136–145.PubMedCrossRefGoogle Scholar
  11. 11.
    Bachanova V., Frankel A.E., Cao Q., et al. 2015. Phase 1 study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin. Cancer Res. 21 (6), 1267–1272.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cheal S.M., Yoo B., Boughdad S., et al. 2014. Evaluation of glycodendron and synthetically modified dextran clearing agents for multistep targeting of radioisotopes for molecular imaging and radioimmunotherapy. Mol. Pharmaceutics. 11 (2), 400–416.CrossRefGoogle Scholar
  13. 13.
    Stamova S., Feldmann A., Cartellieri M., et al. 2012. Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibodyinduced T cell synapses. Anal. Biochem. 423, 261–268.PubMedCrossRefGoogle Scholar
  14. 14.
    Chames P., Baty D. 2009. Bispecific antibodies for cancer therapy. mAbs. 1 (6), 539–547. doi 10.4161/mabs.1.6.10015PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lee R.J., Fang Q., Davol P.A., et al. 2007. Antibody targeting of stem cells to infarcted myocardium. Stem Cells. 25, 712–717.PubMedCrossRefGoogle Scholar
  16. 16.
    Spiess C., Zhai Q., Carter P.J. 2015. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67 (2), 95–106.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang F., Wen W., Qin W. 2016. Bispecific antibodies as a development platform for new concepts and treatment strategies. Int. J. Mol. Sci. 18 (1), 48.PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Schaefer W., Völger H.R., Lorenz S., et al. 2016. Heavy and light chain pairing of bivalent quadroma and knobs-into-holes antibodies analyzed by UHR-ESIQTOF mass spectrometry. mAbs. 8 (1), 49–55. doi 10.1080/19420862.2015.1111498PubMedCrossRefGoogle Scholar
  19. 19.
    Ridgway J.B., Presta L.G., Carter P. 1996. “Knobsinto-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9 (7), 617–621.PubMedCrossRefGoogle Scholar
  20. 20.
    Von Kreutenstein T.S., Escobar-Carbrera E., Lario P.I., et al. 2013. Improving biophysical properties of a bispecific antibody scaffold to aid developability: Quality by molecular design. mAbs. 5, 646–654.CrossRefGoogle Scholar
  21. 21.
    Davis J.H., Aperlo C., Li Y., Kurosawa E., et al. 2010. SEEDbodies: Fusion proteins based on strandexchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng., Des. Sel. 23, 195–202.CrossRefGoogle Scholar
  22. 22.
    Kontermann R.E. 2012. Dual targeting strategies with bispecific antibodies. mAbs. 4, 182–197.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Spasevska I., Duong M.N., Klein C., Dumontet C. 2015. Advances in bispecific antibodies engineering: Novel concepts for immunotherapies. J. Blood Disord. Transfus. 6, 243.Google Scholar
  24. 24.
    Schaefer W., Regula J.T., Bähner M., et al. 2011. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. U. S. A. 108, 11187–11192.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lewis S.M., Wu X., Pustilnik A., et al. 2014. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat. Biotechnol. 32, 191–198.PubMedCrossRefGoogle Scholar
  26. 26.
    Castoldi R., Jucknischke U., Pradel L.P., et al. 2012. Molecular characterization of novel trispecific ErbBcMet-IGF1R antibodies and their antigen-binding properties. Protein Eng., Des. Sel. 25, 551–560.CrossRefGoogle Scholar
  27. 27.
    Schanzer J., Jekle A., Nezu J., et al. 2011. Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob. Agents Chemother. 55 (5), 2369–2378.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brockmann E.C., Cooper M., Stromsten N., et al. 2005. Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J. Immunol. Methods, 296, 159–170.PubMedCrossRefGoogle Scholar
  29. 29.
    Miller B.R., Demarest S.J., Lugovskoy A., et al. 2010. Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng., Des. Sel. 23 (7), 549–557.CrossRefGoogle Scholar
  30. 30.
    Manzke O., Tesch H., Diehl V., Bohlen H. 1997. Single-step purification of bispecific monoclonal antibodies for immunotherapeutic use by hydrophobic interaction chromatography. J. Immunol. Methods. 208 (1), 65–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Müller-Späth Th., Ulmer N., Aumann L., et al. 2013. Purifying common light-chain bispecific antibodies: A twin-column, countercurrent chromatography platform process. BioProcess Int. 11 (5), 36–45.Google Scholar
  32. 32.
    Kontermann R.E., Brinkmann U. 2015. Bispecific antibodies. Drug Discovery Today. 20 (7), 838–847.PubMedCrossRefGoogle Scholar
  33. 33.
    Eigenbrot C., Fuh G. 2013. Two-in-one antibodies with dual action Fabs. Curr. Opin. Chem. Biol. 17 (3), 400–405.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu C., Ying H., Bose S., et al. 2009. Molecular construction and optimization of anti-human IL-1α/β dual variable domain immunoglobulin (DVD-IgTM) molecules. mAbs. 1 (4), 339–347.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Labrijn A.F., Meesters J.I., Priem P., et al. 2014. Controlled Fab-arm exchange for the generation of stable bispecific IgG1. Nat. Protoc. 9 (10), 2450–2463.PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer N., Elson G., Magistrelli G., et al. 2015. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat. Commun. 6, 6113.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Le Gall F., Kipriyanov S.M., Moldenhauer G., Little M. 1999. Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19: Effect of valency on cell binding. FEBS Lett. 453 (1–2), 164–168.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu M.-R., Zhang T., Gacerez A.T., et al. 2015. B7H6-specific bispecific T cell engagers (BiTEs) lead to tumor elimination and host anti-tumor immunity. J. Immunol. 194 (11), 5305–5311.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bargou R., Leo E., Zugmaier G., et al. 2008. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 321, 974–977.PubMedCrossRefGoogle Scholar
  40. 40.
    Moore P.A., Zhang W., Rainey G.J., et al. 2011. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 117 (17), 4542–4551.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharkey R.M., Rossi E.A., McBride W.J., et al. 2010. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin. Nucl. Med. 40 (3), 190–203. doi 10.1053/j.semnuclmed.2009.12.002PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rossi E.A., Rossi D.L., Cardillo T.M., et al. 2011. Preclinical studies on targeted delivery of multiple IFN-α2b to HLA-DR in diverse hematologic cancers. Blood. 118, 1877–1884.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bodet-Milin C., Ferrer L., Rauscher A., et al. 2015. Pharmacokinetics and dosimetry studies for optimization of pretargeted radioimmunotherapy in CEAexpressing advanced lung cancer patients. Front. Med. (Lausanne). 2, 84.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Deev S.M., Lebedenko E.N. 2009. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 1, 32–50.Google Scholar
  45. 45.
    Revets H., Baetselier P.D., Muyldermans S. 2005. Nanobodies as novel agents for cancer therapy. Expert Opin. Biol. Ther. 5 (1), 111–124.PubMedCrossRefGoogle Scholar
  46. 46.
    Conrath K.E., Lauwereys M., Wyns L., Muyldermans S. 2001. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J. Biol. Chem. 276 (10), 7346–7350.CrossRefGoogle Scholar
  47. 47.
    Marschall A.L.J., Dübel S., Böldicke T. 2015. Specific in vivo knockdown of protein function by intrabodies. mAbs. 7 (6), 1010–1035.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jendreyko N., Popkov M., Rader C., Barbas C.F. 3rd. 2005. Phenotypic knockout of VEGF-R2 and Tie-2 with an intradiabody reduces tumor growth and angiogenesis in vivo. Proc. Natl. Acad. Sci. U. S. A. 102, 8293–8298.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Huston J.S., Levinson D., Mudgett-Hunter M., et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin singlechain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 85, 5879–5883.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hust M., Jostock T., Menzel C., et al. 2007. Single chain Fab (scFab) fragment. BMC Biotechnol. 7, 14.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Colby D.W., Garg P., Holden T., et al. 2004. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J. Mol. Biol. 342, 901–912.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim D.S., Song H.N., Nam H.J., et al. 2014. Directed evolution of human heavy chain variable domain (VH) using in vivo protein fitness filter. PLoS One. 9, e98178.CrossRefGoogle Scholar
  53. 53.
    Fishburn C.S. 2008. The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. J. Pharm. Sci. 97 (10), 4167–4183.PubMedCrossRefGoogle Scholar
  54. 54.
    Merlot A.M., Kalinowski D.S., Kovacevic Z., et al. 2015. Making a case for albumin—a highly promising drug-delivery system. Future Med. Chem. 7 (5), 553–556.PubMedCrossRefGoogle Scholar
  55. 55.
    Fan G., Wang Z., Hao M., Li J. 2015. Bispecific antibodies and their applications. J. Hematol. Oncol. 8, 130.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Taki S., Kamada H., Inoue M., et al. 2015. A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy. PLoS One. 10 (12), e0144712.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gschwind A., Fischer O.M., Ullrich A. 2004. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer. 4 (5), 361–370.PubMedCrossRefGoogle Scholar
  58. 58.
    Adams G.P., Weiner L.M. 2005. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157.PubMedCrossRefGoogle Scholar
  59. 59.
    Sharkey R.M., Goldenberg D.M. 2006. Targeted therapy of cancer: New prospects for antibodies and immunoconjugates. CA Cancer J. Clin. 56, 226–243.PubMedCrossRefGoogle Scholar
  60. 60.
    Asano R., Shimomura I., Konno S., et al. 2014. Rearranging the domain order of a diabodybased IgG-like bispecific antibody enhances its antitumor activity and improves its degradation resistance and pharmacokinetics. mAbs. 6 (5), 1243–1254.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shen Y., Zeng L., Novosyadlyy R., et al. 2015. A bifunctional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. mAbs. 7 (5), 931–945.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lu D., Zhang H., Ludwig D., et al. 2004. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J. Biol. Chem. 279, 2856–2865.PubMedCrossRefGoogle Scholar
  63. 63.
    Rubinfeld B., Upadhyay A., Clark S.L., et al. 2006. Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat. Biotechnol. 24, 205–209.PubMedCrossRefGoogle Scholar
  64. 64.
    Lugovskoy A.A. 2017. Engineering antibodies as drugs: Principles and practice. Mol. Biol. (Moscow). 51 (6), 772–781.CrossRefGoogle Scholar
  65. 65.
    Breton C.S., Nahimana A., Aubry D., et al. 2014. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J. Hematol. Oncol. 7 (1), 33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mullard A. 2014. FDA approves first bispecific. Nat. Rev. Drug Discov. 14 (1), 7.CrossRefGoogle Scholar
  67. 67.
    Queudeville M., Handgretinger R., Ebinger M. 2017. Immunotargeting relapsed or refractory precursor Bcell acute lymphoblastic leukemia: Role of Blinatumomab. OncoTargets Ther. 10, 3567–3578.CrossRefGoogle Scholar
  68. 68.
    Topp M.S., Gokbuget N., Stein A.S. 2015. Safety and activity of Blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66.PubMedCrossRefGoogle Scholar
  69. 69.
    Kantarjian H., Stein A., Gokbuget N. 2017. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bellone S., Black J., English D.P., et al. 2016. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE®), is highly active against primary uterine serous papillary carcinoma cell lines in vitro. Am. J. Obstet. Gynecol. 214 (1), 99.e1–99.e8.CrossRefGoogle Scholar
  71. 71.
    Leong S.R., Sukumaran S., Hristopoulos M., et al. 2017. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 129 (5), 609–618.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wu J., Fu J., Zhang M., Liu D. 2015. AFM13: A firstin-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy. J. Hematol. Oncol. 8 (1), 96.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang T., Sun F., Xie W., et al. 2016. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 372, 166–178.PubMedCrossRefGoogle Scholar
  74. 74.
    Hirschhaeuser F., Leidig T., Rodday B., et al. 2009. Test system for trifunctional antibodies in 3D MCTS culture. J. Biomol. Screening. 14 (8), 980–990.CrossRefGoogle Scholar
  75. 75.
    Riechelmann H., Wiesneth M., Schauwecker P., et al. 2007. Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: A pilot clinical trial. Cancer Immunol. Immunother. 56, 1397–1406.PubMedCrossRefGoogle Scholar
  76. 76.
    Stanglmaier M., Faltin M., Ruf P., et al. 2008. Bi20 (FBTA05), a novel trifunctional bispecific antibody (anti-CD20 × anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int. J. Cancer. 123, 1181–1189PubMedCrossRefGoogle Scholar
  77. 77.
    Lindhofer H., Hess J., Ruf P. 2011. Trifunctional Triomab ® antibodies for cancer therapy. In: Bispecific Antibodies. Ed. Kontermann R.E. Berlin: Springer-Verlag, 289–312.CrossRefGoogle Scholar
  78. 78.
    Seimetz D., Lindhofer H., Bokemeyer C. 2010. Development and approval of the trifunctional antibody Catumaxomab (anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer Treat. Rev. 36 (6), 458–467.PubMedCrossRefGoogle Scholar
  79. 79.
    Ruf P., Jager M., Ellwart J., et al. 2004. Two new trifunctional antibodies for the therapy of human malignant melanoma. Int. J. Cancer. 108, 725–732.PubMedCrossRefGoogle Scholar
  80. 80.
    Jäger M., Schoberth A., Ruf P., et al. 2009. The trifunctional antibody Ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res. 69, 4270–4276.PubMedCrossRefGoogle Scholar
  81. 81.
    Heiss M.M., Murawa P., Koralewski P., et al. 2010. The trifunctional antibody Catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int. J. Cancer. 27 (9), 2209–2221.CrossRefGoogle Scholar
  82. 82.
    Kiewe P., Hasmüller S., Kahlert S., et al. 2006. Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody Ertumaxomab in metastatic breast cancer. Clin. Cancer Res. 12 (10), 3085–3091.PubMedCrossRefGoogle Scholar
  83. 83.
    Stanglmaier M., Faltin M., Ruf P., et al. 2008. Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti-CD20 × anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int. J. Cancer. 123 (5), 1181–1189.PubMedCrossRefGoogle Scholar
  84. 84.
    Koristka S., Cartellieri M., Theil A., et al. 2012. Retargeting of human regulatory T cells by single-chain bispecific antibodies. J. Immunol. 188, 1551–1558.PubMedCrossRefGoogle Scholar
  85. 85.
    Lahdenranta J., Paragas V., Kudla A.J., et al. 2013. Preclinical activity of MM-111, a bispecific ErbB2/ErbB3 antibody in previously treated ErbB2-positive gastric and gastroesophageal junction cancer. J. Clin. Oncol. 31 (Suppl. 4), 48. doi 10.1200/jco.2013.31.4_suppl.48CrossRefGoogle Scholar
  86. 86.
    Fitzgerald J.B., Johnson B.W., Baum J., et al. 2014. MM-141, an IGF-IR-and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol. Cancer Ther. 13 (2), 410–425.PubMedCrossRefGoogle Scholar
  87. 87.
    Reid A., Vidal L., Shaw H., de Bono J. 2007. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer. 43, 481–489.PubMedCrossRefGoogle Scholar
  88. 88.
    Guo X.-F., Zhu X.-F., Yang W.-C., et al. 2014. An EGFR/HER2-bispecific and enediyne-energized fusion protein shows high efficacy against esophageal cancer. PLoS One. 9 (3), e92986.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Geyer C.E., Forster J., Lindquist D., et al. 2006. Lapatinib plus Capecitabine for HER2-positive advanced breast cancer. N. Eng. J. Med. 355, 2733–2743.CrossRefGoogle Scholar
  90. 90.
    Ding L., Tian C., Feng S., et al. 2015. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics. 5 (4), 378–398.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Biel N.M., Siemann D.W. 2016. Targeting the angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Lett. 380 (2), 525–533.PubMedCrossRefGoogle Scholar
  92. 92.
    Baker L.C., Boult J.K., Thomas M., et al. 2016. Acute tumour response to a bispecific Ang-2-VEGF-A antibody: Insights from multiparametric MRI and gene expression profiling. Br. J. Cancer. 115 (6), 691–702.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    DiGiandomenico A., Keller A.E., Gao C., et al. 2014. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl. Med. 6 (262), 262ra155.PubMedCrossRefGoogle Scholar
  94. 94.
    Rossotti M.A., González-Techera A., Guarnaschelli J., et al. 2015. Increasing the potency of neutralizing single-domain antibodies by functionalization with a CD11b/CD18 binding domain. mAbs. 7 (5), 820–828.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sun M., Pace C.S, Yao X., et al. 2014. Rational design and characterization of the novel, broad and potent bispecific HIV-1 neutralizing antibody iMabm36. J. Acquired Immune Defic. Syndr. 66 (5), 473–483.CrossRefGoogle Scholar
  96. 96.
    Jiang X., Jia Q., Lu L., et al. 2016. A novel bispecific peptide HIV-1 fusion inhibitor targeting the N-terminal heptad repeat and fusion peptide domains in gp41. Amino Acids. 48, 2867–2873.PubMedCrossRefGoogle Scholar
  97. 97.
    Chen W., Feng Y., Prabakaran P., et al. 2014. Exceptionally potent and broadly cross-reactive, bispecific multivalent HIV-1 inhibitors based on single human CD4 and antibody domains. J. Virol. 88 (2), 1125–1139.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yu X., Duval M., Gawron M., et al. 2016. Overcoming the constraints of anti-HIV/CD89 bispecific antibodies that limit viral inhibition. J. Immunol. Res. 2016, 9425172.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Shi X., Deng Y., Wang H., et al. 2016. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion. mAbs. 8 (3), 574–584.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Geoghegan E.M., Zhang H., Desai P.J., et al. 2015. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob. Agents Chemother. 59 (1), 527–535.CrossRefGoogle Scholar
  101. 101.
    Ibanez L.I., de Filette M., Hultberg A., et al. 2011. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J. Infect. Dis. 203 (8), 1063–1072.PubMedCrossRefGoogle Scholar
  102. 102.
    Manicourt D.H., Fujimoto N., Obata K., Thonar E.J. 1995. Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with rheumatoid arthritis: Relationship to serum levels of antigenic keratan sulfate and systemic parameters of inflammation. Arthritis Rheumatol. 38, 1031–1039.CrossRefGoogle Scholar
  103. 103.
    Silva L.C., Ortigosa L.C., Benard G. 2010. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: Mechanisms of action and pitfalls. Immunotherapy. 2, 817–833.PubMedCrossRefGoogle Scholar
  104. 104.
    Rubbert-Roth A. 2012. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology. 51, 38–47.CrossRefGoogle Scholar
  105. 105.
    Alzabin S., Abraham S.M., Taher T.E., et al. 2012. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748.PubMedCrossRefGoogle Scholar
  106. 106.
    Fischer J.A., Hueber A.J., Wilson S., et al. 2015. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 67 (1), 51–62.PubMedCrossRefGoogle Scholar
  107. 107.
    Genovese M.C., Weinblatt M., Aelion J.A., et al. 2016. ABT-122, a Tnf–and IL-17–targeted dual variable domain (DVD)–Ig™ in rheumatoid arthritis patients with inadequate response to methotrexate: Results from a phase 2 trial. ACR/ARHP Annual Meeting, Washington, DC. Arthritis Rheumatol. 68 (Suppl. 10).Google Scholar
  108. 108.
    Qi J., Kan F., Ye X., et al. 2012. A bispecific antibody against IL-1β and IL-17A is beneficial for experimental rheumatoid arthritis. Int. Immunopharmacol. 14, 770–778.PubMedCrossRefGoogle Scholar
  109. 109.
    Bootz F., Neri D. 2016. Immunocytokines: A novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discovery Today. 21 (1), 180–189.PubMedCrossRefGoogle Scholar
  110. 110.
    Hughes C., Sette A., Seed M., et al. 2014. Targeting of viral interleukin-10 with an antibody fragment specific to damaged arthritic cartilage improves its therapeutic potency. Arthritis Res. Ther. 16 (4), R151.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Efimov G.A., Kruglov A.A., Khlopchatnikova Z.V., et al. 2016. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U. S. A. 113 (11), 3006–3011.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wu C., Ying H., Grinnell C., et al. 2007. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol. 25, 1290–1297.PubMedCrossRefGoogle Scholar
  113. 113.
    DiGiammarino E.L., Harlan J.E., Walter K.A., et al. 2011. Ligand association rates to the inner-variabledomain of a dual-variable-domain immunoglobulin are significantly impacted by linker design. mAbs. 3, 487–494.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Onuoha S.C., Ferrari M., Sblattero D., Pitzalis C. 2015. Rational design of antirheumatic prodrugs specific for sites of inflammation. Arthritis Rheumatol. 67 (10), 2661–2672.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Liu M., Xie M., Jiang S., et al. 2014. A novel bispecific antibody targeting tumor necrosis factor α and ED-B fibronectin effectively inhibits the progression of established collagen-induce arthritis. J. Biotechnol. 186, 1–12.PubMedCrossRefGoogle Scholar
  116. 116.
    Kruglov A.A., Lampropoulou V., Fillatreau S., Nedospasov S.A. 2011. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J. Immunol. 187, 5660–5670.PubMedCrossRefGoogle Scholar
  117. 117.
    Winsauer C., Kruglov A.A., Chashchina A.A., et al. 2014. Cellular sources of pathogenic and protective TNF and experimental strategies based on utilization of TNF humanized mice. Cytokine Growth Factor Rev. 25 (2), 115–123.PubMedCrossRefGoogle Scholar
  118. 118.
    Mokhonov V.V., Shilov E.S., Korneev K.V., et al. 2016. Novel bispecific proteins binding cytokines and myeloid cell surface markers. Ross. Immunol. Zh. 10 (19), 378–385.Google Scholar
  119. 119.
    Bremer E., ten Cate B., Samplonius D.F., et al. 2006. CD7-restricted activation of Fas-mediated apoptosis: A novel therapeutic approach for acute T-cell leukemia. Blood. 107, 2863–2870.PubMedCrossRefGoogle Scholar
  120. 120.
    Wilk E., Witte T., Marquardt N., et al. 2009. Depletion of functionally active CD20+ T cells by Rituximab treatment. Arthritis Rheumatol. 60, 3563–3571.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Vasilenko
    • 1
  • V. V. Mokhonov
    • 1
  • E. N. Gorshkova
    • 1
  • I. V. Astrakhantseva
    • 1
  1. 1.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations