Molecular Biology

, Volume 52, Issue 2, pp 151–164 | Cite as

Epigenetic Mechanisms of Blood-Pressure Regulation

  • A. L. Markel
  • O. E. Redina


The role of epigenetic mechanisms involved in blood-pressure regulation has been reviewed. It is known that some periods in early pre- and postnatal ontogenesis are very sensitive to some environmental and endogenous influences. These periods are characterized as highly vulnerable to the formation of a complex of epigenetic changes that may determine the trajectory of the further formation of physiological systems involved in the blood-pressure regulation. Early life influences on these systems may predispose an individual to the development of hypertensive disease in further life. In some cases, the transmission of epigenetic changes to the next generations may resolve the contradiction between the high heritability of arterial hypertensive disease and the low total contribution of polymorphic DNA variants in the population variability of blood pressure values.


blood pressure hypertension epigenetic mechanisms 



blood pressure


essential hypertension


hypertensive disease


single nucleotide polymorphism


renin-angiotensin-aldosterone system








5-hydroxymethyl cytosine




epithelial sodium channel


angiotensin-converting enzyme


11-β-hydroxysteroid dehydrogenase type 2




aldosterone synthase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jennings G.L., Touyz R.M. 2013. Hypertension guidelines: More challenges highlighted by Europe. Hypertension. 62, 660–665.PubMedCrossRefGoogle Scholar
  2. 2.
    Messerli F.H., Williams B., Ritz E. 2007. Essential hypertension. Lancet. 370, 591–603.PubMedCrossRefGoogle Scholar
  3. 3.
    Bolivar J.J. 2013. Essential hypertension: An approach to its etiology and neurogenic pathophysiology. Int. J. Hypertens. 2013, 547809.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Garcia E.A., Newhouse S., Caulfield M.J., et al. 2003. Genes and hypertension. Curr. Pharm. Des. 9, 1679–1689.PubMedCrossRefGoogle Scholar
  5. 5.
    Timberlake D.S., O’Connor D.T., Parmer R.J. 2001. Molecular genetics of essential hypertension: Recent results and emerging strategies. Curr. Opin. Nephrol. Hypertens. 10, 71–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Snieder H., Harshfield G.A., Treiber F.A. 2003. Heritability of blood pressure and hemodynamics in African-and European-American youth. Hypertension. 41, 1196–1201.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehret G.B. 2010. Genome-wide association studies: Contribution of genomics to understanding blood pressure and essential hypertension. Curr. Hypertens. Rep. 12, 17–25.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Padmanabhan S., Melander O., Johnson T., et al. 2010. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tomaszewski M., Debiec R., Braund P.S., et al. 2010. Genetic architecture of ambulatory blood pressure in the general population: Insights from cardiovascular gene-centric array. Hypertension. 56, 1069–1076.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Levy D., Ehret G.B., Rice K., et al. 2009. Genomewide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Newton-Cheh C., Johnson T., Gateva V., et al. 2009 Consortium Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret G.B., Munroe P.B., Rice K.M.,et al. 2011. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 478, 103–109.Google Scholar
  13. 13.
    Kreutz R., Hubner N., James M.R., et al. 1995. Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10. Proc. Natl. Acad. Sci. U. S. A. 92, 8778–8782.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kunes J., Zicha J. 2009. The interaction of genetic and environmental factors in the etiology of hypertension. Physiol. Res. 58 (Suppl. 2), S33–S41.PubMedGoogle Scholar
  15. 15.
    Eichler E.E., Flint J., Gibson G., et al. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zuk O., Hechter E., Sunyaev S.R., et al. 2012. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. U. S. A. 109, 1193–1198.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Trerotola M., Relli V., Simeone P., et al. 2015. Epigenetic inheritance and the missing heritability. Hum. Genomics. 9,17.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Scherrer U., Rimoldi S.F., Sartori C., et al. 2015. Fetal programming and epigenetic mechanisms in arterial hypertension. Curr. Opin. Cardiol. 30, 393–397.PubMedCrossRefGoogle Scholar
  19. 19.
    Rimoldi S.F., Messerli F.H. 2015. Feto-maternal interactions: A possible clue to explain the ‘missed heritability’ in arterial hypertension. Curr. Opin. Cardiol. 30, 391–392.PubMedCrossRefGoogle Scholar
  20. 20.
    Dupont C., Armant D.R., Brenner C.A. 2009. Epigenetics: Definition, mechanisms and clinical perspective. Semin. Reprod. Med. 27, 351–357.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jones P.A., Takai D. 2001. The role of DNA methylation in mammalian epigenetics. Science. 293, 1068–1070.PubMedCrossRefGoogle Scholar
  22. 22.
    Esteller M. 2011. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874.PubMedCrossRefGoogle Scholar
  23. 23.
    Bernstein B.E., Meissner A., Lander E.S. 2007. The mammalian epigenome. Cell. 128, 669–681.PubMedCrossRefGoogle Scholar
  24. 24.
    Mizrahi E.H., Noy S., Sela B.A., et al. 2003. Further evidence of interrelation between homocysteine and hypertension in stroke patients: A cross-sectional study. Isr. Med. Assoc. J. 5, 791–794.PubMedGoogle Scholar
  25. 25.
    Han L., Wu Q., Wang C., et al. 2015. Homocysteine, ischemic stroke, and coronary heart disease in hypertensive patients: A population-based, prospective cohort study. Stroke. 46, 1777–1786.PubMedCrossRefGoogle Scholar
  26. 26.
    Friso S., Choi S.W. 2002. Gene-nutrient interactions and DNA methylation. J. Nutr. 132, 2382S–2387S.PubMedCrossRefGoogle Scholar
  27. 27.
    Robertson K.D. 2005. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhong J., Agha G., Baccarelli A.A. 2016. The role of DNA methylation in cardiovascular risk and disease: Methodological aspects, study design, and data analysis for epidemiological studies. Circ. Res. 118, 119–131.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cowley A.W.J., Nadeau J.H., Baccarelli A., et al. 2012. Report of the National Heart, Lung, and Blood Institute Working Group on epigenetics and hypertension. Hypertension. 59, 899–905.PubMedCrossRefGoogle Scholar
  30. 30.
    Alikhani-Koopaei R., Fouladkou F., Frey F.J., Frey B.M. 2004. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J. Clin. Invest. 114, 1146–1157.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    El Shamieh S., Visvikis-Siest S. 2012. Genetic biomarkers of hypertension and future challenges integrating epigenomics. Clin. Chim. Acta. 414, 259–265.PubMedCrossRefGoogle Scholar
  32. 32.
    Udali S., Guarini P., Moruzzi S., Choi S.W., et al. 2013. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol. Aspects Med. 34, 883–901.PubMedCrossRefGoogle Scholar
  33. 33.
    Jones P.A. 1999. The DNA methylation paradox. Trends Genet. 15, 34–37.PubMedCrossRefGoogle Scholar
  34. 34.
    Ehrlich M. 2002. DNA methylation in cancer: Too much, but also too little. Oncogene. 21, 5400–5413.PubMedCrossRefGoogle Scholar
  35. 35.
    Smolarek I., Wyszko E., Barciszewska A.M., et al. 2010. Global DNA methylation changes in blood of patients with essential hypertension. Med, Sci, Monit. 16, CR149–CR155.Google Scholar
  36. 36.
    Rangel M., dos Santos J.C., Ortiz P.H., et al. 2014. Modification of epigenetic patterns in low birth weight children: importance of hypomethylation of the ACE gene promoter. PLOS ONE. 9, e106138.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Friso S., Udali S., Guarini P., et al. 2013. Global DNA hypomethylation in peripheral blood mononuclear cells as a biomarker of cancer risk. Cancer Epidemiol. Biomarkers Prev. 22, 348–355.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Terry M.B., Delgado-Cruzata L., Vin-Raviv N., et al. 2011. DNA methylation in white blood cells: Association with risk factors in epidemiologic studies. Epigenetics. 6, 828–837.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu Y., Liu P., Yang C., et al. 2014. Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: Effect of salt and genomic sequence. Hypertension. 63, 827–838.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Irmak M.K., Sizlan A. 2006. Essential hypertension seems to result from melatonin-induced epigenetic modifications in area postrema. Med. Hypotheses. 66, 1000–1007.PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma R., Ottenhof T., Rzeczkowska P.A., et al. 2008. Epigenetic targets for melatonin: Induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J. Pineal Res. 45, 277–284.PubMedCrossRefGoogle Scholar
  42. 42.
    Korkmaz A., Reiter R.J. 2008. Epigenetic regulation: A new research area for melatonin? J. Pineal Res. 44, 41–44.Google Scholar
  43. 43.
    Baccarelli A., Rienstra M., Benjamin E.J. 2010. Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circ. Cardiovasc. Genet. 3, 567–573.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Friso S., Lotto V., Choi S.W., et al. 2012. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J. Med. Genet. 49, 192–199.PubMedCrossRefGoogle Scholar
  45. 45.
    Baccarelli A., Wright R., Bollati V., et al. 2010. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 21, 819–828.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Viswanathan M., Laitinen J.T., Saavedra J.M. 1992. Differential expression of melatonin receptors in spontaneously hypertensive rats. Neuroendocrinology. 56, 864–870.PubMedCrossRefGoogle Scholar
  47. 47.
    Morimoto S., Sasaki S., Itoh H., et al. 1999. Sympathetic activation and contribution of genetic factors in hypertension with neurovascular compression of the rostral ventrolateral medulla. J. Hypertens. 17, 1577–1582.PubMedCrossRefGoogle Scholar
  48. 48.
    Fernandez G., Lee J.A., Liu L.C., et al. 2015. The baroreflex in hypertension. Curr. Hypertens. Rep. 17,19.PubMedCrossRefGoogle Scholar
  49. 49.
    Esler M., Eikelis N., Schlaich M., et al. 2008. Human sympathetic nerve biology: Parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann. N. Y. Acad. Sci. 1148, 338–348.PubMedCrossRefGoogle Scholar
  50. 50.
    Hummler E. 2003. Epithelial sodium channel, salt intake, and hypertension. Curr. Hypertens. Rep. 5, 11–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhou Z.H., Bubien J.K. 2001. Nongenomic regulation of ENaC by aldosterone. Am. J. Physiol. Cell Physiol. 281, C1118–C1130.PubMedCrossRefGoogle Scholar
  52. 52.
    Stockand J.D. 2002. New ideas about aldosterone signaling in epithelia. Am. J. Physiol. Renal Physiol. 282, F559–F576.PubMedCrossRefGoogle Scholar
  53. 53.
    Stokes J.B., Sigmund R.D. 1998. Regulation of rENaC mRNA by dietary NaCl and steroids: Organ, tissue, and steroid heterogeneity. Am. J. Physiol. 274, C1699–C1707.PubMedCrossRefGoogle Scholar
  54. 54.
    Mick V.E., Itani O.A., Loftus R.W., et al. 2001. The alpha-subunit of the epithelial sodium channel is an aldosterone-induced transcript in mammalian collecting ducts, and this transcriptional response is mediated via distinct cis-elements in the 5'-flanking region of the gene. Mol. Endocrinol. 15, 575–588.PubMedGoogle Scholar
  55. 55.
    Zhang D., Yu Z.Y., Cruz P., et al. 2009. Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney Int. 75, 260–267.PubMedCrossRefGoogle Scholar
  56. 56.
    Tang A.C., Akers K.G., Reeb B.C., et al. 2006. Programming social, cognitive, and neuroendocrine development by early exposure to novelty. Proc. Natl. Acad. Sci. U. S. A. 103, 15716–15721.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Martin-Gronert M.S., Ozanne S.E. 2013. Early life programming of obesity. Med. Wieku. Rozwoj. 17, 7–12.PubMedGoogle Scholar
  58. 58.
    Mizuno M., Siddique K., Baum M., et al. 2013. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension. 61, 180–186.PubMedCrossRefGoogle Scholar
  59. 59.
    Law C.M., Shiell A.W. 1996. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J. Hypertens. 14, 935–941.PubMedCrossRefGoogle Scholar
  60. 60.
    Huxley R., Neil A., Collins R. 2002. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet. 360, 659–665.PubMedCrossRefGoogle Scholar
  61. 61.
    Barker D.J., Osmond C., Golding J., et al. 1989. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 298, 564–567.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lillycrop K.A. 2011. Effect of maternal diet on the epigenome: Implications for human metabolic disease. Proc. Nutr. Soc. 70, 64–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Gluckman P.D., Hanson M.A. 2004. Developmental origins of disease paradigm: A mechanistic and evolutionary perspective. Pediatr. Res. 56, 311–317.PubMedCrossRefGoogle Scholar
  64. 64.
    Campbell D.M., Hall M.H., et al. 1996. Diet in pregnancy and the offspring’s blood pressure 40 years later. Br. J. Obstet. Gynaecol. 103, 273–280.PubMedCrossRefGoogle Scholar
  65. 65.
    Forrester T.E., Wilks R.J., Bennett F.I., et al. 1996. Fetal growth and cardiovascular risk factors in Jamaican schoolchildren. BMJ. 312, 156–160.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Godfrey K.M., Forrester T., Barker D.J., et al. 1994. Maternal nutritional status in pregnancy and blood pressure in childhood. Br. J. Obstet. Gynaecol. 101, 398–403.PubMedCrossRefGoogle Scholar
  67. 67.
    Stein C.E., Fall C.H., Kumaran K., et al. 1996. Fetal growth and coronary heart disease in south India. Lancet. 348, 1269–1273.PubMedCrossRefGoogle Scholar
  68. 68.
    Ritz E., Amann K., Koleganova N., et al. 2011. Prenatal programming-effects on blood pressure and renal function. Nat. Rev. Nephrol. 7, 137–144.PubMedCrossRefGoogle Scholar
  69. 69.
    Manalich R., Reyes L., Herrera M., et al. 2000. Relationship between weight at birth and the number and size of renal glomeruli in humans: A histomorphometric study. Kidney Int. 58, 770–773.PubMedCrossRefGoogle Scholar
  70. 70.
    Spencer J., Wang Z., Hoy W. 2001. Low birth weight and reduced renal volume in Aboriginal children. Am. J. Kidney Dis. 37, 915–920.PubMedCrossRefGoogle Scholar
  71. 71.
    Stelloh C., Allen K.P., Mattson D.L., et al. 2012. Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria. Transl. Res. 159, 80–89.PubMedCrossRefGoogle Scholar
  72. 72.
    Zandi-Nejad K., Luyckx V.A., Brenner B.M. 2006. Adult hypertension and kidney disease: The role of fetal programming. Hypertension. 47, 502–508.PubMedCrossRefGoogle Scholar
  73. 73.
    Luyckx V.A., Brenner B.M. 2005. Low birth weight, nephron number, and kidney disease. Kidney Int. Suppl. 97, S68–S77.CrossRefGoogle Scholar
  74. 74.
    Franco M.C., Christofalo D.M., Sawaya A.L., et al. 2006. Effects of low birth weight in 8-to 13-year-old children: Implications in endothelial function and uric acid levels. Hypertension. 48, 45–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Franco M.C., Casarini D.E., Carneiro-Ramos M.S., et al. 2008. Circulating renin-angiotensin system and catecholamines in childhood: Is there a role for birthweight? Clin. Sci. (London.). 114, 375–380.CrossRefGoogle Scholar
  76. 76.
    Bertram C.E., Hanson M.A. 2001. Animal models and programming of the metabolic syndrome. Br. Med. Bull. 60, 103–121.PubMedCrossRefGoogle Scholar
  77. 77.
    Brownie A.C., Bernardis L.L., Niwa T., et al. 1966. The influence of age and sex on the development of adrenal regeneration hypertension. Lab. Invest. 15, 1342–1356.PubMedGoogle Scholar
  78. 78.
    Dlouha H., Krecek J., Zicha J. 1979. Effect of age on hypertensive stimuli and the development of hypertension in Brattleboro rats. Clin. Sci. (London). 57, 273–275.CrossRefGoogle Scholar
  79. 79.
    Zicha J., Kunes J., Jelinek J. 1986. Experimental hypertension in young and adult animals. Hypertension. 8, 1096–1104.PubMedCrossRefGoogle Scholar
  80. 80.
    Langley-Evans S.C., Gardner D.S., Jackson A.A. 1996. Association of disproportionate growth of fetal rats in late gestation with raised systolic blood pressure in later life. J. Reprod. Fertil. 106, 307–312.PubMedCrossRefGoogle Scholar
  81. 81.
    Woods L.L., Weeks D.A., Rasch R. 2004. Programming of adult blood pressure by maternal protein restriction: Role of nephrogenesis. Kidney Int. 65, 1339–1348.PubMedCrossRefGoogle Scholar
  82. 82.
    Langley-Evans S.C. 2000. Critical differences between two low protein diet protocols in the programming of hypertension in the rat. Int. J. Food. Sci. Nutr. 51, 11–17.PubMedCrossRefGoogle Scholar
  83. 83.
    Nwagwu M.O., Cook A., Langley-Evans S.C. 2000. Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br. J. Nutr. 83, 79–85.PubMedGoogle Scholar
  84. 84.
    Khan I.Y., Taylor P.D., Dekou V., et al. 2003. Genderlinked hypertension in offspring of lard-fed pregnant rats. Hypertension. 41, 168–175.PubMedCrossRefGoogle Scholar
  85. 85.
    Kind K.L., Simonetta G., Clifton P.M., et al. 2002. Effect of maternal feed restriction on blood pressure in the adult guinea pig. Exp. Physiol. 87, 469–477.PubMedCrossRefGoogle Scholar
  86. 86.
    Woodall S.M., Johnston B.M., Breier B.H., et al. 1996. Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr. Res. 40, 438–443.PubMedCrossRefGoogle Scholar
  87. 87.
    Kwong W.Y., Wild A.E., Roberts P., et al. 2000. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 127, 4195–4202.PubMedGoogle Scholar
  88. 88.
    Watkins A.J., Wilkins A., Cunningham C., et al. 2008. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J. Physiol. 586, 2231–2244.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Watkins A.J., Lucas E.S., Torrens C., et al. 2010. Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin-angiotensin-system homeostasis in the offspring. Br. J. Nutr. 103, 1762–1770.PubMedCrossRefGoogle Scholar
  90. 90.
    Langley-Evans S.C. 2006. Developmental programming of health and disease. Proc. Nutr. Soc. 65, 97–105.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gopalakrishnan G.S., Gardner D.S., Rhind S.M., et al. 2004. Programming of adult cardiovascular function after early maternal undernutrition in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R12–R20.PubMedCrossRefGoogle Scholar
  92. 92.
    Edwards L.J., McMillen I.C. 2002. Periconceptional nutrition programs development of the cardiovascular system in the fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R669–R679.PubMedCrossRefGoogle Scholar
  93. 93.
    Lillycrop K.A., Slater-Jefferies J.L., Hanson M.A., et al. 2007. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br. J. Nutr. 97, 1064–1073.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Erhuma A., McMullen S., Langley-Evans S.C., et al. 2009. Feeding pregnant rats a low-protein diet alters the hepatic expression of SREBP-1c in their offspring via a glucocorticoid-related mechanism. Endocrine. 36, 333–338.PubMedCrossRefGoogle Scholar
  95. 95.
    Bogdarina I., Welham S., King P.J., et al. 2007. Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension. Circ. Res. 100, 520–526.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sherman R.C., Langley-Evans S.C. 1998. Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat. Clin. Sci (London). 94, 373–381.CrossRefGoogle Scholar
  97. 97.
    Sherman R.C., Langley-Evans S.C. 2000. Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin. Sci. (London). 98, 269–275.CrossRefGoogle Scholar
  98. 98.
    Zicha J., Kunes J. 1999. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol. Rev. 79, 1227–1282.PubMedCrossRefGoogle Scholar
  99. 99.
    Zicha J., Dobesova Z., Kunes J. 2008. Late blood pressure reduction in SHR subjected to transient captopril treatment in youth: Possible mechanisms. Physiol. Res. 57, 495–498.PubMedGoogle Scholar
  100. 100.
    Harrap S.B., Van der Merwe W.M., Griffin S.A., et al. 1990. Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension. 16, 603–614.PubMedCrossRefGoogle Scholar
  101. 101.
    Zicha J., Vaneckova I., Kunes J. 2010. Systems analysis in hypertension: Complementary role of physiologists and geneticists. Physiol. Res. 59, 837–839.PubMedGoogle Scholar
  102. 102.
    Lu D., Raizada M.K., Iyer S., et al. 1997. Losartan versus gene therapy: Chronic control of high blood pressure in spontaneously hypertensive rats. Hypertension. 30, 363–370.PubMedCrossRefGoogle Scholar
  103. 103.
    Katovich M.J., Gelband C.H., Reaves P., et al. 1999. Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am. J. Physiol. 277, H1260–H1264.PubMedGoogle Scholar
  104. 104.
    Cedar H. 1988. DNA methylation and gene activity. Cell. 53, 3–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Jackson A.A., Dunn R.L., Marchand M.C., et al. 2002. Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin. Sci. (London). 103, 633–639.CrossRefGoogle Scholar
  106. 106.
    Brawley L., Torrens C., Anthony F.W., et al. 2004. Glycine rectifies vascular dysfunction induced by dietary protein imbalance during pregnancy. J. Physiol. 554, 497–504.PubMedCrossRefGoogle Scholar
  107. 107.
    Drake A.J., Tang J.I., Nyirenda M.J. 2007. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin. Sci. Lond). 113, 219–232.PubMedCrossRefGoogle Scholar
  108. 108.
    Cole T.J., Blendy J.A., Monaghan A.P., et al. 1995. Molecular genetic analysis of glucocorticoid signaling during mouse development. Steroids. 60, 93–96.PubMedCrossRefGoogle Scholar
  109. 109.
    Sun K., Yang K., Challis J.R. 1997. Differential expression of 11 beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J. Clin. Endocrinol. Metab. 82, 300–305.PubMedGoogle Scholar
  110. 110.
    Campbell A.L., Murphy B.E. 1977. The maternalfetal cortisol gradient during pregnancy and at delivery. J. Clin. Endocrinol. Metab. 45, 435–440.PubMedCrossRefGoogle Scholar
  111. 111.
    Quinkler M., Stewart P.M. 2003. Hypertension and the cortisol–cortisone shuttle. J. Clin. Endocrinol. Metab. 88, 2384–2392.PubMedCrossRefGoogle Scholar
  112. 112.
    Cottrell E.C., Seckl J.R. 2009. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav. Neurosci. 3,19.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hadoke P.W., Lindsay R.S., Seckl J.R., et al. 2006. Altered vascular contractility in adult female rats with hypertension programmed by prenatal glucocorticoid exposure. J. Endocrinol. 188, 435–442.PubMedCrossRefGoogle Scholar
  114. 114.
    O'Regan D., Kenyon C.J., Seckl J.R., et al. 2004. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am. J. Physiol. Endocrinol. Metab. 287, E863–E870.PubMedCrossRefGoogle Scholar
  115. 115.
    Wintour E.M., Johnson K., Koukoulas I., et al. 2003. Programming the cardiovascular system, kidney and the brain–a review. Placenta. 24 (Suppl. A), S65–S71.PubMedCrossRefGoogle Scholar
  116. 116.
    Zimmermann H., Gardner D.S., Jellyman J.K., et al. 2003. Effect of dexamethasone on pulmonary and renal angiotensin-converting enzyme concentration in fetal sheep during late gestation. Am. J. Obstet. Gynecol. 189, 1467–1471.PubMedCrossRefGoogle Scholar
  117. 117.
    Lillycrop K.A., Phillips E.S., Jackson A.A., et al. 2005. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 135, 1382–1386.PubMedCrossRefGoogle Scholar
  118. 118.
    Yang S., Zhang L. 2004. Glucocorticoids and vascular reactivity. Curr. Vasc. Pharmacol. 2, 1–12.PubMedCrossRefGoogle Scholar
  119. 119.
    Djouadi F., Weinheimer C.J., Saffitz J.E., et al. 1998. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J. Clin. Invest. 102, 1083–1091.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Desvergne B., Wahli W. 1999. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev. 20, 649–688.PubMedGoogle Scholar
  121. 121.
    Witzmann S.R., Turner J.D., Meriaux S.B., et al. 2012. Epigenetic regulation of the glucocorticoid receptor promoter 1(7) in adult rats. Epigenetics. 7, 1290–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Weaver I.C., Cervoni N., Champagne F.A., et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854.PubMedCrossRefGoogle Scholar
  123. 123.
    McGowan P.O., Sasaki A., D’Alessio A.C., et al. 2009. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    De Geus E.J., Kupper N., Boomsma D.I., et al. 2007. Bivariate genetic modeling of cardiovascular stress reactivity: Does stress uncover genetic variance? Psychosom. Med. 69, 356–364.Google Scholar
  125. 125.
    Turner J.D., Muller C.P. 2005. Structure of the glucocorticoid receptor (NR3C1) gene 5' untranslated region: Identification and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol. 35, 283–292.PubMedCrossRefGoogle Scholar
  126. 126.
    Turner J.D., Vernocchi S., Schmitz S., et al. 2014. Role of the 5'-untranslated regions in post-transcriptional regulation of the human glucocorticoid receptor. Biochim. Biophys. Acta. 1839, 1051–1061.PubMedCrossRefGoogle Scholar
  127. 127.
    Daskalakis N.P., Yehuda R. 2014. Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: Systematic review of contributing factors. Front. Neurosci. 8,369.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Li-Tempel T., Larra M.F., Sandt E., et al. 2016. The cardiovascular and hypothalamus–pituitary–adrenal axis response to stress is controlled by glucocorticoid receptor sequence variants and promoter methylation. Clin. Epigenet. 8,12.CrossRefGoogle Scholar
  129. 129.
    Loos R.J., Fagard R., Beunen G., et al. 2001. Birth weight and blood pressure in young adults: A prospective twin study. Circulation. 104, 1633–1638.PubMedCrossRefGoogle Scholar
  130. 130.
    Wesseling S., Koeners M.P., Joles J.A. 2011. Salt sensitivity of blood pressure: Developmental and sexrelated effects. Am. J. Clin. Nutr. 94, 1928S–1932S.PubMedCrossRefGoogle Scholar
  131. 131.
    Dagan A., Kwon H.M., Dwarakanath V., et al. 2008. Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance. Am. J. Physiol. Renal Physiol. 295, F29–F34.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Baum M. 2010. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am. J. Physiol. Renal Physiol. 298, F235–F247.PubMedCrossRefGoogle Scholar
  133. 133.
    Koleganova N., Piecha G., Ritz E. 2009. Prenatal causes of kidney disease. Blood Purif. 27, 48–52.PubMedCrossRefGoogle Scholar
  134. 134.
    Parra M., Rodrigo R., Barja P., et al. 2005. Screening test for preeclampsia through assessment of uteroplacental blood flow and biochemical markers of oxidative stress and endothelial dysfunction. Am. J. Obstet. Gynecol. 193, 1486–1491.PubMedCrossRefGoogle Scholar
  135. 135.
    Bodnar L.M., Catov J.M., Simhan H.N., et al. 2007. Maternal vitamin D deficiency increases the risk of preeclampsia. J. Clin. Endocrinol. Metab. 92, 3517–3522.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chelbi S.T., Mondon F., Jammes H., et al. 2007. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension. 49, 76–83.PubMedCrossRefGoogle Scholar
  137. 137.
    Einstein F., Thompson R.F., Bhagat T.D., et al. 2010. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS ONE. 5, e8887.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Rexhaj E., Bloch J., Jayet P.Y., et al. 2011. Fetal programming of pulmonary vascular dysfunction in mice: Role of epigenetic mechanisms. Am. J. Physiol. Heart Circ. Physiol. 301, H247–H252.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang L., Du L., Tang L., et al. 2015. 7A.03: Transgenerational inheritance of genome-wide DNA methylation profiles in pulmonary vascular endothelial dysfunction following extrauterine growth restriction. J. Hypertens. 33 (Suppl. 1),e89–e90.PubMedCrossRefGoogle Scholar
  140. 140.
    Krause B.J., Costello P.M., Munoz-Urrutia E., et al. 2013. Role of DNA methyltransferase 1 on the altered eNOS expression in human umbilical endothelium from intrauterine growth restricted fetuses. Epigenetics. 8, 944–952.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Berkowitz D.E., White R., Li D., et al. 2003. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 108, 2000–2006.PubMedCrossRefGoogle Scholar
  142. 142.
    Barker D.J., Osmond C. 1986. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1, 1077–1081.PubMedCrossRefGoogle Scholar
  143. 143.
    Barker D.J., Hales C.N., Fall C.H., et al. 1993. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): Relation to reduced fetal growth. Diabetologia. 36, 62–67.PubMedCrossRefGoogle Scholar
  144. 144.
    Pizzolo F., Friso S., Morandini F., et al. 2015. Apparent mineralocorticoid excess by a novel mutation and epigenetic modulation by HSD11B2 promoter methylation. J. Clin. Endocrinol. Metab. 100, E1234–E1241.PubMedCrossRefGoogle Scholar
  145. 145.
    Carvajal C.A., Gonzalez A.A., Romero D.G., et al. 2003. Two homozygous mutations in the 11 betahydroxysteroid dehydrogenase type 2 gene in a case of apparent mineralocorticoid excess. J. Clin. Endocrinol. Metab. 88, 2501–2507.PubMedCrossRefGoogle Scholar
  146. 146.
    Lin-Su K., Zhou P., Arora N., et al. 2004. In vitro expression studies of a novel mutation delta299 in a patient affected with apparent mineralocorticoid excess. J. Clin. Endocrinol. Metab. 89, 2024–2027.PubMedCrossRefGoogle Scholar
  147. 147.
    Parsa A.A., New M.I. 2011. Low-renin hypertension of childhood. Endocrinol. Metab. Clin. North Am. 40, 369–377.PubMedCrossRefGoogle Scholar
  148. 148.
    Parvez Y., Sayed O.E. 2013. Apparent mineralocorticoid excess (AME) syndrome. Indian Pediatr. 50, 416–418.PubMedCrossRefGoogle Scholar
  149. 149.
    Alzahrani A.S., Aljuhani N., Qasem E., et al. 2014. Apparent mineralocorticoid excess caused by a novel mutation in 11-beta hydroxysteroid dehydrogenase type 2 enzyme: Its genetics and response to therapy. Endocr. Pract. 20, e151–e156.PubMedCrossRefGoogle Scholar
  150. 150.
    Zahraldin K., Janahi I.A., Ben-Omran T., et al. 2015. Two Qatari siblings with cystic fibrosis and apparent mineralocorticoid excess. Ann. Thorac. Med. 10, 69–72.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Ferrari P., Sansonnens A., Dick B., et al. 2001. In vivo 11beta-HSD-2 activity: Variability, salt-sensitivity, and effect of licorice. Hypertension. 38, 1330–1336.PubMedCrossRefGoogle Scholar
  152. 152.
    Wilson R.C., Dave-Sharma S., Wei J.Q., et al. 1998. A genetic defect resulting in mild low-renin hypertension. Proc. Natl. Acad. Sci. U. S. A. 95, 10200–10205.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Zhao Y., Gong X., Chen L., et al. 2014. Site-specific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur. J. Hum. Genet. 22, 734–740.PubMedCrossRefGoogle Scholar
  154. 154.
    Friso S., Pizzolo F., Choi S.W., et al. 2008. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 199, 323–327.PubMedCrossRefGoogle Scholar
  155. 155.
    Ferrari P. 2010. The role of 11 beta-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim. Biophys. Acta. 1802, 1178–1187.PubMedCrossRefGoogle Scholar
  156. 156.
    Seckl J.R. 1970. Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids. 62, 89–94.CrossRefGoogle Scholar
  157. 157.
    Benediktsson R., Lindsay R.S., Noble J., et al. 1993. Glucocorticoid exposure in utero: New model for adult hypertension. Lancet. 341, 339–341.PubMedCrossRefGoogle Scholar
  158. 158.
    Ortiz L.A., Quan A., Zarzar F., et al. 2003. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension. 41, 328–334.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Singh R.R., Cullen-McEwen L.A., Kett M.M., et al. 2007. Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J. Physiol. 579, 503–513.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Baserga M., Kaur R., Hale M.A., et al. 2010. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11beta-hydroxysteroid dehydrogenase type 2 in a sex-specific manner. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R334–R342.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Drake A.J., McPherson R.C., Godfrey K.M., et al. 2012. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes controlling glucocorticoid action and foetal growth. Clin. Endocrinol. (Oxford). 77, 808–815.CrossRefGoogle Scholar
  162. 162.
    Friso S., Carvajal C.A., Fardella C.E., et al. 2015. Epigenetics and arterial hypertension: The challenge of emerging evidence. Transl. Res. 165, 154–165.PubMedCrossRefGoogle Scholar
  163. 163.
    Li S., Zhu J., Zhang W., et al. 2011. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 124, 175–184.PubMedCrossRefGoogle Scholar
  164. 164.
    Mercer T.R., Dinger M.E., et al. 2009. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159.PubMedCrossRefGoogle Scholar
  165. 165.
    Mattick J.S., Amaral P.P., Dinger M.E., et al. 2009. RNA regulation of epigenetic processes. Bioessays. 31, 51–59.PubMedCrossRefGoogle Scholar
  166. 166.
    Millis R.M. 2011. Epigenetics and hypertension. Curr. Hypertens. Rep. 13, 21–28.PubMedCrossRefGoogle Scholar
  167. 167.
    Wang G.K., Zhu J.Q., Zhang J.T., et al. 2010. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur. Heart J. 31, 659–666.PubMedCrossRefGoogle Scholar
  168. 168.
    Rajewsky N. 2006. microRNA target predictions in animals. Nat. Genet. 38 (Suppl.), S8–S13.PubMedCrossRefGoogle Scholar
  169. 169.
    Friedman R.C., Farh K.K., Burge C.B., et al. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Wong N., Wang X. 2015. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43, D146–D152.PubMedCrossRefGoogle Scholar
  171. 171.
    Vorozheykin P.S., Titov I.I. 2015. Web server for prediction of miRNAs and their precursors and binding sites. Mol. Biol. (Moscow). 49, 846–853.CrossRefGoogle Scholar
  172. 172.
    Eulalio A., Huntzinger E., Izaurralde E. 2008. Getting to the root of miRNA-mediated gene silencing. Cell. 132, 9–14.PubMedCrossRefGoogle Scholar
  173. 173.
    Filipowicz W., Bhattacharyya S.N., Sonenberg N. 2008. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 9, 102–114.CrossRefGoogle Scholar
  174. 174.
    Makeyev E.V., Maniatis T. 2008. Multilevel regulation of gene expression by microRNAs. Science. 319, 1789–1790.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Liang M., Liu Y., Mladinov D., et al. 2009. MicroRNA: A new frontier in kidney and blood pressure research. Am. J. Physiol. Renal Physiol. 297, F553–F558.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Di Castro S., Scarpino S., Marchitti S., et al. 2013. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Hypertension. 61, 534–541.PubMedCrossRefGoogle Scholar
  177. 177.
    Liu Y., Taylor N.E., Lu L., et al. 2010. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 55, 974–982.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Marques F.Z., Campain A.E., Tomaszewski M., et al. 2011. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 58, 1093–1098.PubMedCrossRefGoogle Scholar
  179. 179.
    Jackson K.L., Marques F.Z., Watson A.M., et al. 2013. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 62, 775–781.PubMedCrossRefGoogle Scholar
  180. 180.
    Eskildsen T.V., Jeppesen P.L., Schneider M., et al. 2013. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int. J. Mol. Sci. 14, 11190–11207.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Martin M.M., Lee E.J., Buckenberger J.A., et al. 2006. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J. Biol. Chem. 281, 18277–18284.PubMedCrossRefGoogle Scholar
  182. 182.
    Sethupathy P., Borel C., Gagnebin M., et al. 2007. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Ceolotto G., Papparella I., Bortoluzzi A., et al. 2011. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am. J. Hypertens. 24, 241–246.PubMedCrossRefGoogle Scholar
  184. 184.
    Sober S., Laan M., Annilo T. 2010. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem. Biophys. Res. Commun. 391, 727–732.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Geller D.S., Farhi A., Pinkerton N., et al. 2000. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 289, 119–123.PubMedCrossRefGoogle Scholar
  186. 186.
    de Kloet E.R., Van Acker S.A., Sibug R.M., et al. 2000. Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int. 57, 1329–1336.PubMedCrossRefGoogle Scholar
  187. 187.
    Sempere L.F., Freemantle S., Pitha-Rowe I., et al. 2004. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Romero D.G., Plonczynski M.W., Carvajal C.A., et al. 2008. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology. 149, 2477–2483.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Ling S., Nanhwan M., Qian J., et al. 2013. Modulation of microRNAs in hypertension-induced arterial remodeling through the beta1 and beta3-adrenoreceptor pathways. J. Mol. Cell. Cardiol. 65, 127–136.PubMedCrossRefGoogle Scholar
  190. 190.
    Kontaraki J.E., Marketou M.E., Zacharis E.A., et al. 2014. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: Novel targets in essential hypertension. J. Hum. Hypertens. 28, 510–516.PubMedCrossRefGoogle Scholar
  191. 191.
    Robertson S., MacKenzie S.M., Alvarez-Madrazo S., et al. 2013. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension. 62, 572–578.PubMedCrossRefGoogle Scholar
  192. 192.
    Jiang Q., Lagos-Quintana M., Liu D., et al. 2013. miR-30a regulates endothelial tip cell formation and arteriolar branching. Hypertension. 62, 592–598.PubMedCrossRefGoogle Scholar
  193. 193.
    Mourad J.J., des Guetz G., Debbabi H., et al. 2008. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann. Oncol. 19, 927–934.PubMedGoogle Scholar
  194. 194.
    Jablonka E., Lamb M.J. 1989. The inheritance of acquired epigenetic variations. J. Theor. Biol. 139, 69–83.PubMedCrossRefGoogle Scholar
  195. 195.
    Anway M.D., Cupp A.S., Uzumcu M., et al. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 308, 1466–1469.PubMedCrossRefGoogle Scholar
  196. 196.
    Harper L.V. 2005. Epigenetic inheritance and the intergenerational transfer of experience. Psychol. Bull. 131, 340–360.PubMedCrossRefGoogle Scholar
  197. 197.
    Soubry A., Hoyo C., Jirtle R.L., et al. 2014. A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line. Bioessays. 36, 359–371.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Siklenka K., Erkek S., Godmann M., et al. 2015. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 350, aab2006.PubMedCrossRefGoogle Scholar
  199. 199.
    Ragunathan K., Jih G., Moazed D. 2015. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science. 348, 1258699.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations